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NUMERICAL TREATMENT OF FRACTURE MECHANICS PROBLEMS

V.Z. Parton* and V.G. Boriskovsky**

Some results of recent investigations on finite
element method (FEM) application for dynamic
fracture mechanics (DFM) problems and a review
of the main trends in fracture mechanics numerical
methods in the USSR are given. A procedure for
higher terms calculation in stress and displace-
ment fields representations near the crack tip is
proposed. These terms have a strong influence
upon the crack trajectory and crack branching as
shown by the numerous data.

INTRODUCTION

The actuality of fracture mechanics numerical methods does not
need special judgement. They have been developed in the USSR
since the beginning of the 70th years and embrace a number of
important trends described in the authors' monographies and
other publications (1-5). The solution of static and dynamic
problems of linear and elastic-plastic fracture mechanics in two
and three dimensions with the use of FEM, boundary integral
equations method (BIEM) and weighting function methods (WFM)
can be pinpointed.

The use of FEM is based on the introduction of singular
finite elements (SFE) with special displacement fields approxima-
tions, proceeding from the analytical representations at the crack
tip (2, 4, 6-10), and quarter-type degenerated isoparametric
elements, which model stress singularity as well (3). While
employing the BIEM, an approach based on the limit analyses of
solutions for comparatively thin cavities was worked out
(1, 5, 11). The combined numerical-analytical construction of the
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weight functions enables to advance the procedure (12, 13) of
stress intensity factor (SIF) determination in the three-dimen-
sional case. The method of SIF computing under harmonic loading
is founded on the representation of these factors by superposi-
tion of the model SIF corresponding to the normalised free vibra-
tion modes, which are determined from the FEM solution (2, 4,
14-17).

It was recently noted in some papers (see, for example ref.
(18)) that the use of the asymptotic stress and displacement
representations near the crack tip accounting only for the
leading terms is insufficient and can cause contradiction. The
second-order terms corresponding to the linear displacement
alteration and the constant part of have a strong influence
upon crack kinking and branching processes, as shown in ref.
(19). A sufficient number of higher-order terms has to be ac-
counted for in the photo elasticity data evaluation. The FEM with
the use of SFE allows to calculate the terms of the power, which
is less or equal than half of the element nodes, while the
degenerated isoparametric element application gives the possi-
bility to compute the terms of the first and second order.

The presented method of higher-order terms computing
corresponds to the propagation crack case. The limit transition
allows to apply it to the stationary crack case.

THE FEM APPLICATION TO THE DFM PROBLEMS

At present the variety of the FEM approaches to the numerical
solution of linear fracture mechanics problems is established.
While employing one of them we introduce a special finite element
at the crack tip with displacement fields approximations taken
from the analytical solution for the cracked region.

This approach has been described in scientific literature in
detail (2, 5). We should like to emphasize here that Soviet
authors' elaboration in this direction was among the first (6-10).
The SFE for plane static problems was suggested in (6), while a
similar one was introduced in (7, 8) for the Kirchhoff-Love
plates. The SFE idea was transferred to the problems of plates
lying on an elastic foundation in (9), and to the problem of
cracked shells - in (10) -. The convenient method of stress
intensity factors determination in the case of cracked plates
under harmonic loading was proposed in (14-17).

One has the following equation for the stress intensity
factor:
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Unfortunately, the analytical solutions known in literature
correspond to unbounded bodies and give no information for
comparison with numerical results obtained according to (1.

The numerical solution error estimation follows from (§).
This equation really states that K = < whenw=0.

Consider one of the results obtained for the square plate
with central crack (the crack length and plate side ration was
0.364). The static calculations lead to K /6 V€= 1.23.

When solving the dynamic problem 16 modes were taken into ac-
count.

In the case of homogeneous tension-compression only modes
5, 8, 9, 13 contribute to the sum (1), and the corresponding
expression is:
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One can see that the error is 1.6% whenw =0, and that the
SIF amplitude monotonically increases when v rises. The ampli-
tude becomes unbounded, if the frequency approaches to wy.

THE SECOND-ORDER COMPUTATION

The general solution for the stress and displacement fields near
the tip of a running mode I-11 crack (Fig. 1) can be represented
by the eigen functions superposition (4, 20):
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In the limit case the relation for the stationary crack can
be deduced: :

S
e - BKy (29)

LD \/ 2t

THE WFM APPLICATION

Let us dwell on the key issue of using the data obtained from
some basic problem solutions for the range of problems with
other loading condition. Having deduced the WF the constructive
approach can be obtained. The convenient way for weight func-
tion determination in the plane case was shown in (21), however
its application to the space case is accompanied with significant
difficulties. Particularly we have to know the crack profile, but
in the majority of scientific works (see review (22)) the profile
equation does not satisfy both the energy balance equation and
asymptotic solution. An interesting attempt of WF determination
for space problems was made in (23), but the authors obtained
qualitatively incorrect results.

The method of WF determination based on the combination of
basic problems, numerical solutions and fundamental equations
was proposed in (12, 13). The SIF distribution along a crack
front R_“_ under nonhomogeneous loading c’hsatisfies the following
integral equation:

The explicit dependence between (& andI{(@, “-/g) - SIF
transformed to the dimensionless form, satisfyifig the asymptotic
equation, energy balance equation 2\d inseparability condition
was obtained for elliptical cracks (a, 6 - the ellipse axes).

The SIF for cracks of different types under nonhomogene-
ous loading with account of finite geometries, mutual crack influ-
ence etc. can be obtained after determination of ‘o using the
numerical solution.

The problem of a subsurface semi_elliptic crack in the half-
space was considered in detail. The o - data were determined
on the results of (24), where the solution was obtained by means
of singular integral equations method.
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Three cases of nominal loading in the form
n

&= 65 (X) e (31)
a-

were investigated. The values of the SIF for two characteristic
points: .

C = z»ﬁ‘/u'a/f) C o fm(9%8) j1sn&3) .32
A foLK/L’Q/f’) ® fo(e8 %4’ i

are listed in (12, 13)(®@= /2 is the point of maximal depth).

There are few data for distribution along the subsurface
crack front when A > 1, so FEM calculations were made for
comparison. The FEM results were obtained for the semicircular
crack deptha/~ = 0.2. The grid containing 440 prismatic solid
elements was used. The error of SIF numerical determination was
3% in the case of homogeneous loading (when compared with data
taken from (24), and it increased to 10% in the nonhomogeneous
loading case.

The values of C., Cp Obtained with the help of (30), are
in good corresponden%e wﬁh FEM results, and the accuracy of
the numerical solution is not less than in the FEM case.

THE BIEM APPLICATION

The general approach based on the potential method can not be
directly applied to cracked bodies, because the associated
problems become degenerate. Hence an approach was introduced,
connected with the replacement of the crack by an elliptical
cavity of finite width (1, 5, 11). The limit analyses of solutions
for such cavities give the crack solution. The crack tip stresses
are of the following form:

Ny r %/ 0
G, = 0(,(?)%/,,/(@/#-0(&?) /“/.LO} + .
96(_5) '{L.;./.(e) B me s aressmsssismecceeces (33)

whered,-K/\ffrr.One needs to determine stresses very closely
to the crack tip, while using the first term in (33). But the SIF
can be determined without crack tip stresses determination, if
the next terms in (g) are taken into account. This statement
can be illustrated by considering a plane with a thin elliptical
cut under tension. The stresses along the longest axis are:

e L+rrE (34)

v VFEre
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After multiplying withvlt and taking the ft-series representation
one has: . ’

GSV'F ~ O([-,Ldz/" .................... (é)
A, Come &NT . (36)

~so
It was shown that the G‘SVF—" *~ dependence can be approximated
as a line, if ™ is comparatively large. The extrapolation to the
point ™ = 0 leads to a K-value with 1.5% error, when f'/e = 0.02,
and 7% when /¢ = 0.1. It is important to underline that BIEM

application requires less computer capacities then finite element
method.

"

SYMBOLS USED

)7 /.A, = Lamé coefficients
generalized Young's modulus
= stress tensor components
@)63)6',(3 P
“t, VU = displacement vector components

Ny

c,,Cy = elastic waves velocities
c = crack velocity
{ X(“,X = free vibration frequencies

w‘. = free vibration modes

w = force frequency

{F\S = load vector
\< = SIF corresponding to

<= \(5 = static SIF

K? )\(:\ = coefficients of eigen functions

L{_L] )7@; = element nodes displacements

= = crack contour

{ = crack area

\<° = SIF under homogeneous load s\‘° action
Eo = crack opening displacement under ED action
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