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NUMERICAL METHODS FOR THE DESCRIPTION OF "CERAMIC STEELS"
(ZrO, CONTAINING CERAMICS)

W.H. MULLER¥*

The stress-induced transformation toughening of
7Zr0, containing ceramics is examined by means of a
quantitative model. Transformed Zr0, inclusions are
represented by pressurized, spherical holes sur-
rounding a Griffith crack in an infinite, two-dimen-
sional matrix. The Kjy-value for a given configuration
will be calculated numerically using a pertubation
procedure in order to solve generalized Isida equa-
tions (1). Knowing K; and the Kjc of the matrix it is
possible to predict the increase in fracture tough-
ness of the compound. Numerical errors will be esti-
mated and the final results are compared with exper-
imental data.

INTRODUCTION

The increase in fracture toughness of ZrO; containing ceramics has
been reported and discussed extensively (e.g.) by Claussen und
Riihle (2), Evans (3) and Evans and Heuer (4). Two mechanisms are
mainly responsible for the improvement: "Transformation tough-
ening by microcracking" and "gstress-induced transformation tough-
ening". The latter (to which we restrict ourselves in this paper) is
based upon the stabilization of tetragonal t-ZrO, far below room-
temperature by means of a surrounding matrix (e.g. Al;03). Under
the influence of the enormous stress-concentration in the neigh-
bourhood of an approaching crack tip the ZrO, inclusions will
transform into their more voluminous, monoclinic m-version. Hence
extra work is necessary to move the crack through the generated
compressive process zone. The corresponding Kic-increase was cal-
culated approximatively in (2) using Irvin's energy concept. Miiller
showed in (5,6) that it is alternatively possible to apply a com-
pounding technique. He studied the forces along a chord in a
"sphere of action" around a transformed ZrO,-particle and deter-
mined their influence on the Kj-value of a simple Griffith crack.
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Both methods were able to reproduce the experimental rec .8
fairly well, but nevertheless: they were not based upon exs~ SO-
lutions of a given boundary-value-problem. This shortcom’ .g will
be removed in the present paper.

MODEL

We consider a Griffith crack in an infinite two-dimensional plane
under uniform stress ¢ at infinity: Figure 1. In order to modelize
the toughening effect we shall assume that the crack is surround-
ed by several transformed ZrO.-particles. These inclusions are re-
presented by circular holes which are subject to an enormous
pressure (cp.(5,6)) so that the t 2> m volume increase is taken into
account.

Now, if for a given configuration of a crack and pressurized
holes K; would be known, one could calculate the '"toughening
ratio"

Kr Ky
= — — 1
Ko (Al:0s) o,y 7a il

where o, is the critical stress which must be overcome in order to
propagate a crack of length a through an Al,0,-matrix. ¢, can be
calculated for any given a, since

—
K;c (Al,05) = 3MNm (2)

One concludes that for « ¢ 1 the crack is stabilized and the
smaller «, the more important is the increase in toughness. Obvi-
ously the final problem is the determination of Kji. We proceed to
discuss this point.

ANALYSIS

Throughout the following we shall use the notation of the Isida pa-
per (1). Proofs are kept to a minimum and rely decisively upon (1).
The reader who is mainly interested in the results is recommended
to glance through the presumptions and propositions and then
should go directly to the next chapter.

Basic_equations

Presumptions:
Consider (Figure 2) an infinite plate containing an arbitrary distri-
bution of various elliptical holes (j = 1,..., N), some of which may

be circles or cracks. The holes are subject to a pressure i
which can be zero or not. The plate is assumed to be subjected to
the following stresses at infinity:

¥ In (1) only "free" holes were considered, i.e. pg = 0.
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" cews sy, tT ce@rrD, t =7 (3)
XX d yy d xy

where o is a reference stress, X, Y are cartesian coordinates and
«, B, 7. 8, p are constants as shown in Figure 2.

The Airy stress function of the problem can be written (with re-
spect to any hole j) as:

x=¢rd’Re['z'j§j (ZJ)+*_] (Zj)}

bz = T ((Fayy + 1 Fayp) 200 ey v i M) 57 @

n,J

. . . N - - . - +2
¥;(z;) = Do,y Inzgr I (Da,y + 1 Dy, ;) 23+ L (Ba,j t iKp, ;)2)
=1 n=o

n=

where dots and primes correspond to real and imaginary parts
resp.; Zj is the complex, dimensionless variable with respect to the
j-th coordinate system (cf. Figure 2):

PEER SRR Y (5)
with a reference length d.
The occuring complex coefficients (Fp,j» Dn,j) and (Mg, s Kn,j) have

to satisfy the following equations which relate them to the (Fq,10
Dn,k)s (Mn, ko Kn,k) of all other holes and ensure the validity of (3):

AT . A7 .
Mn, 4= T {B+a+rj(p cos Bj+6 sin Bj)} + e (p cos aj+6 sin otj) +

«© N )

Py k Pk )
+ 2_: DY (e"’J F;”k+f"’j Fp,k)

p=o k¥*j
M’-—"i( in B;—6 B)+£( in a;—6 cos «;) + (6)
n,i= 7 Fil¥ sin B; cos By g (» sin «j co j 1

© N
_ Pk & P’sz
LR RED B G MR P A

p=a k*j
AT .
K;I’J= e {(B—a) cos Zaj-27 sin 2aj+rj cos Zaj(p cos Bj—d sin Bj)}+
A
+ 57 (p cos 3«;=6 sin 3aj) +

@ N
Pk Pikys Py k Py kps
+ aP’*p- +bP*°D’ +c’ F: +d"’ F
Eo kEj ( n,j psk n,j Pk n,j psk n,J P;k)
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B

n

’ = s

n,j 4
Al

+ 52 (p sin 3ozj+6 cos 3<xj) +

(B-«) sin 2<xj+27 cos 20<j+rj sin 2aj(p cos B;=6 sin =~ |+
/7

D3 o~~~

® N

k k
+ ¥ T (—bp,_D‘ +aP!%D, —dp’_F' +Cp,%F’ ) ,
n,j psk mnyj psk n,j pok n,j opok

" p=o k*j
whnere
" cos[(n+2)(Bjk—aj)} 0,k Sin{(n+2)(BJk—aj)} Pijk Pj
s ’ § - ) rjk:_—1 rjz—
n,j (n+2)(rjk)n+2 n,j (0+2) (r j)) +2 d d
Pk cos _ .
S B (295} (p(aj-oi)+(nrp+2) (Bjimey))
bp,k n+2 (r )n+p+2
n,j ik . (6)2
Py k cos _ o
il o e (P22 (S8} (pv2) (ajmm)+(nrptd) (Byumey))
dp,k n+2 ( )n+p+2
n,J rjk
Py k cos . e
Coai| - {~1)#** [n+p+1] {sin} ((p+2) (@ j=a) +(n+p+2) (Bj—;))
fp,k n+l ( )n+p+2
n,J rjk

(A“; refers to the Kronecker symbol!)

Furthermore all coefficients must obey the '"pressure hole rela-
tions" in order to guarantee that all hole boundaries j are only
subject to the pressure pd and to no other forces:

s 2n+2p+2, 2 2 pd
U A S " K. 4R (M, + 52 A%))
n, p=o J 2p,j 2p,J 2P>J  2Psl) i
- 2nt+2ptz, . 2n 2n pd
F: =-I A @" K, 82N (M, 452 a0)
SALER R, J 2p,j 2p>J 2p»J 2P g P
_ E k2"+2p+‘( 2n+1 2n+1 )
2nt1, p=o J 2p+1,j 2pt1,j  2pti,§ 2pti,
L
2nt+2pts , 2nt+1 2n+1
TN I AL AR Coi o S oM ) (),
2nt1,j p=o 2p+1,j 2pt1,j 2pti,j 2pTl,]
@
s _ 2 x2n+2p+2 2n N +V2n M’
2n,j p=o J 2p,j 2p,§ 2pPsJ 2pP>l
hid +2p+
o E e
n,J p=o J 2p,j 2p,§ 2PsJ 2Ps]
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H _ in+2p+4( 2nt1 s 2n+1 s )
2nt+1,j p=o j 2pt1,j 2pt1,j 2pt1,j 2pt1, j
3 _ E x2n+2p+4( 2nt+1 i 2n+1 3 )
il i 2pt1,§ 2pt1,j  2pti,j 2ptis]
where
2,R2

2p+1l
o _ 2, pt1 (p+1) o _ po
Pap,j = 1 - sj) 22p p ’ Rap,j = Pap,j 2

2p+1
pn ] e Hzx(pﬂ) [§ | o .y A‘ )

2n 2pt2
szij 2 0

pti,n
e

p_m+1](<2p+1>R}”:1) An—m,zm]
m=1

R:;,j a- a;)n+p+x [[(P+1) [2§+1](R3+R;2) [1 + %] An,1}

e
2n 2p+1
Vap, | 2 0

n,p
vop % [2p+1]R]"'“An—...,a...+1 > 1)
=0 PTH )
2

(p+l) ":P
:n = FL - c;)n+p+1 - 3 [2P+1]R}m+zAn—m _—
L 2 P m=o \p—M ’
2 2 ntpt1
Sz:.,j ) (1 - ,:j)“ P " 2p+1 A nip 2p+1 A N
2n B 2p+1 (p+1) n,1_ n—m.2mt1
sz’j 2 p m=o 1P~
nti,p 2p pom
+ 2(2p+1) § Rj An"‘m+l,2m
m=1 P
+ +pt
Pi:+i,] 1 - s;)n pe 2p+3
2n+1 = 2p+3 t(p+2) An 1 ¥
Tap+1,j 2 p+l ’

n,ptl |2p+3
+ b3 \p

amt2_
]((2p+2>nj 1) An_m’,m+1]

p—mt+l
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2nt1 n+pt2

2
Rzp+1,j 1 - Ej) [ 2p+1
P -1,2
= — t(p+l)[ ](R.f R, ) A +
a2 p JET T
nti,pt1 [2p4+2
NESSI [p R*"A j
m=1 p-mtl) * i A
2n+1

Qzp+1,j = 1 - 2pta

+1,p+
8%)n+p+1 (2P+3) " lip 1 j2pt+2 H4m
J 2 m=1

p—mt+l

2n+1 2 ntpt2
sipa,g| G- =TT [+ "H’XPH\Z‘”Z ]A +
w:;i:,j 22p+2 m=1 (p-m+l et Lyt
nti,p {2p+]
+2(2p+2) L [ R A (n > 0)
s J n—mt1,2mt1
m=o p—m

(Where for the bounds of summations smaller values must be taken!)
and:

) 1 2 2.1/2
a b a, ¥ Bak 72 (ay=by)
N ie Ol . | R_:[_.L__J-] i
J d ’ J aj ’ 3 aj — bj L d
~ m__ (2n o 2mrl (204l
An"m,zm - zznn [n_m]y An‘m,2m+l - 21n+1(2n+1) [n‘—m]

Proof:

The only difference between (7) and the free hole conditions of (1)
are the underlined terms which we proceed to derive.

Consider a single elliptical hole under the influence of an
internal pressure Dg- Introduce the mapping function

z=0(0) =S B+ 5D ®)

which transforms the hole boundary and its external region into a
unit circle and its external region (Figure 3). The Kolosov equa-
tions allow to calculate all stresses along the hole edge:

tom + tes = 29 {o’(z) + ;’(;)}¢=e‘ﬁ
(9)

£ = to, — 2itas = — 2¢ [—————C {E(?) de’{z) + dw’(z)H
nn sS ns tn’(f) a¢ a¢ P = eiB 3

where the Goursat functions can be expanded into Laurent series:
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O (0(8) = ag + T (o &™ + By &™)
m=1 (10)

@) e f

% st T (ratm ot e ™)

m=1
Since t,n is no longer zero but equal to -p, the resulting relations

between the expansion coefficients ((2.74) in (1)) have to be
changed:

po - m
Bames = Bamsa (in(1)) + 2o8 %)
(11)
pO ' m— e m
bamta = Oam+a (in(1)) + 3 (2mt1) (R (2m=1), (2 +a)]
Since:
—2m _ e c 2n —(2m+1) _ e c 2nt+1
(RC) - ? An—m,zm [z] ’ (Rt) - § An“m,2m+l [Z]
n—m n=m (12)
the ¢(z) and v¥(z) of (1) have to be extended as follows:
P @ © —(Zn- )
o) = o@HnD] <2 T I 75 A, [F™"" -
m=1 n=m
= I (@ +im) 2 M i) 2"
© B, —(2n+1)
’ ) Po —
Vi) =¥ @ GaD)] - §T@ED T T Avm, 2 (2 i
(13)
=-p. 1% n@ i) () 4§ (m2)(K:+ 1K) 2
n=1 n=o
where
o s 2n+2p+2 2n o 2n g Po .o
Pin ” )_: A (Pzp sz " H?P [M’P " 20 Ap])
p=o (14)
o o . 2n+2p+2 2n o 2n . Po .o
Fy = )E A (sz sz + SzP [sz * o Ap])
p—D

All other coefficients satisfy the original conditions in (2.77) of (1).
Now, in the case of N holes (13) and (14) can be used analogously
as in (1) and one finally arrives at (4) - (7), q.e.d..

Proposition II:

The stress intensity factors Kp and Kpp; for modes I and II resp.
can be calculated via:

K - 1 Kep) - 2oznd)/? um {(zy - ap"/7 ey} A9
1 11 zj_),\j § j 23
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provided that fj(zj) for the crack j is known.

Proof:
cf. (1) for a motivation.

Numerical procedure

In order to enable an explicit calculation of Kp and Kjp for
various hole configurations one has to determine the unknown co-
efficients Dy, ;s Fa,jr My, s K“'-i (n = 0,1,25e5 J = 1,2,...,N) from the
relations (6) and (7). Use 18 made of the Isida perturbation
technique:

Presumptions:

Let Ay =8 jA (16)
with a new perturbation parameter A which has to be determined
suitably and constants 8 representing the ratio of hole lengths.

All unknowns are assumed as the following power series is A (per-
turbation ansatz):

D, = ¥ ni"’), 2P, F, = 3 Fﬁ"’) AZP
n,J p=n+1 n,J n,J p=n+1 n,j
v (2p) 2p ! (2p) 2p
= D A F = F A 17
2nt1,j =§+z 2nt1,j 2nt1,j P=§+3 2nt1, j 17)
M - M(ﬂ) AU + E M(ZP) AZP’ K = K(°) Ao + 2 K(ZP) )‘zP
n,J n,j n p=1 ns n,J n,j n p=1 n,J

All expansion coefficients can be calculated successively via
(j = lye.,N):

ute) = 1 (Bra), W o

0,] 05]

mie) = M(°), = 0 (n>1)

n,j n,J
KE?i = % {(B—a)cosZaj—ZysinZaj}, Kiji = % {(B—a)sinZaj+270052aj}
k) -k 20 @D

n,j n,

(2n+2) _ 2n+2 2n (u) 2n (o) ﬂ

5",1 N Sj {(Pu )j Ké;j o (Ho )j [M;,j - 20 ]}

‘2“+2) _ __2n+2 2n gn) 2n 50)

2n,j %5 {(To )j Ku,j L )j Mo,j}
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SRR (O P SO ), [ 2—°]}
SR (O o, T W }

M(’) = g (eoa (2) f ng))

n, k#j n,J °’k n,j o,k
N 2)
W o § et ) s e #)
n,J k#j s J °’k n,J o,k
(2) . § p{® b B . o
K“;j - kij [a“’l o,k * b j U,k * c“’j 0,k s J o,k]
gD = 1 (ol et D) qore 2y ook )
"’j =+ n,j o,k n,j o,k n,j o,k n,j o,k
¥ (18)
(2n+2q) _ zn+a2pt2 (2q 2p— z)+ H:n (2q 2p—2)
2n,j pzo S [(Pzp i Kapos : )j 2p, ]
S’"+ZQ) q_! 2nt2pt2 2n $2q—2p—2)+ 2n qu 2p— 2)
= - v
2n, § pEo 5 [(TZP)J Kipos ¢ 2p)J 2p, }

(2n+2q) - qil szn+2p+2{(Q2n (2q 2p— 2) (S n) Mgﬂq—ZP—Z)}

2n,j oo i 2p 19 3 2p"j  2p, ]
(an+t2q) _ a5!  an+aptaf o2n (2q-2p=2)  2n (2q-2p—2)
= w M
2n,j pzo S {(QZP)] 2p, ( zP)j 2p,J }
(2n+2q) _ 2 zn+zp+4 zn+1 (zq 2p— 4) 2n+1 (2q 2p—4)
2n¥1,j - {(P2p+l 3 ap+:,j (H2p+1)j 2p+1,j }
P—D
$2n+2q) _ 2n+2p+4{(T2n+l 53Q'3P")+ (V2n+1) ’q_’P”‘)}
2nt1,j p=o 2pt1’ j 2p+l,j 2pt1” § 2p+l,j
(2n+2q) _ ;2 2n+zp+4 2n+1 (Zq—Zp—‘) 2n+1 (zq 2p—a)
2nt1,j - {(sz+1 J 2p+1,j * (Szp+1)3 2pt1, j }
p=o
$=n+2q) _A;% z2n+a2ptse 2n+1 SZQ_ZP_‘) 2n+1 :q—zp—4
2n+1,j sy {(sz+1)J 2pt+1, j * (w2p+l j zp+1,3 }
p=o
N -2 2
L e B IR o e
"’j k%j p=o “’j P k n,j Pk
N 2q72 2q)
M$2q)= M qz [ fP: (zq) s k Fs a ]
n,J K*j p=o ny Pa “sJ psk
2) 2q)
£080 o, ot -0
0] 0,
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N 2q—2 2q) 2
K(ZQ)= T L {aP’k D§’:) + bP’k DS : + CP’k F(2:)+ dp’k FS q)}
n, k%j p=o nyj P nyj P n,j P n,j Pk
2q) N 2q—2 2 2
xs q = ¥ T {_bP,k D§3Q) + aPsk Dg q)_ dPsk F§24)+ cP** FS q)}
n,j k%j p=o n,j prk n,j psk n,j Pk n,j Pk

Jg=12,..,N q=2,3,...,M;, M3 =

Proof:
Insertion of the perturbation ansatz into (6), (7) and inspection of
equal powers in A yields immediately equations (18).

Insertion of (18) into (15) gives for the j-th crack:
)‘/z .

KI =0 ('rraj

1 IRTCS VS (P+1)’[2p+1]539 K(z“—’P_2)+M§2"—2P_2)+ P °‘:]+

A
2, PP 2p,j 2p,j 20 p

n=1 p=o ——

(19)

M —y not (p+1)(2p+3) i — sege
+ 3 azn My - [2p+1]s;p+1[K§2:Iz? z)+ Mg::lzp z)]}
=1 p=o 2%P P pti, ] pti,j
A computer program can now be prepared acc.to (18). It automati-
cally computes the coefficients of all holes and the stress intensity
factors of all cracks for various geometric and loading parameters.

RESULTS

The following configurations have been studied in detail: i) one
and two pressurized 2um-hole(s) resp., circling at a fixed distance
d around the centre of a crack (Figures 4-8); ii) one and two
pressurized 2pm-hole(s) resp., located at various distances x above
a crack tip (Figures 9,10). In all situations the critical load o of
the Al,0,-matrix was applied at infinity (1,2). The internal pres-
sure was assumed to be

Po = 2,56 GPa (20)

which is a typical value for a transformed 2pm ZrO, particle as
was shown by Miiller and Miiller in (8) and in (5,6).

One observes (Figures 4-8) that at a small angle of inclination
B the toughening ratio « is greater than one, so that the crack
becomes unstable. With increasing B8 the toughening ratio of crack
tip A decreases distinctively, assumes a minimum and meets finally
at B8 = 90° the « of crack tip B (symmetrical point); the crack is
stabilized. The existence of stability and instability zones was
already observed in (5,6) where a compounding method was used:
Figure 11 shows a normalized distribution of forces along a chord
in a sphere of action around a transformed ZrO: particle. If a
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crack enters from the left, it becomes unstable under the influence
of a traction zone. Thus it advances towards the interior of the
sphere, where it will be stabilized by pressure. And in fact, the
smaller the chord distance X, the greater the pressure becomes
and the more effective is the stabilization. This is shown quantita-
tively in Figures 9, 10 (crack tip A).

DISCUSSION AND OUTLOOK

The truncation of the series (17) and the resulting closure of the
iteration scheme (18) leads inevitably to numerical errors in (19).
As in (1) it was observed that for

)\:% > 1 (21)

the convergence is rather weak so that even very high order
terms have to be taken into account in order to guarantee an
accurracy in « of at least 1%. It shall be noted that in Figures 9,
10 for x£[1,5;3] pm M = 60 was used whereas in all other cases it
was sufficient to choose 12 £ M & 24.

The calculated values of « show that it is possible to achieve
an increase of 50% and more if the particle is placed suitably*. But
if not, the toughness decreases. Therefore one should consider
random distributions of pressurized holes around a crack and cal-
culate a mean value of «. This will be done in a subsequent paper.

SYMBOLS USED

a, aj = _crack length (m)

Dn, jo | P Mq, j» Kn,j = dimensionless expansion coefficients

K1, Kr1s Kic = stress intensity factors (Nm—s/’)

Pos Pi = pressure (Pa)

tij stress component (Pa)

X, Y, Xj, Yy = cartesian coordinates (m)

z, Zj = dimensionless complex variable

3 dimensionless toughening ratio
o - critical stress (Pa)

%5, ¢, ¥ ¥y = dimensionless Goursat functions

X = Airy stress function (N)

X In agreemengswith the experiments where K¢ (Alz053 + Zr0,) =
6 - 10MNm /2
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bbby b do zeplane AYsp "
® /A1203 /‘ o
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—‘*¥¥¥‘¥¥O C-plane

Figure 1 Idealized Al;05-Zr02 Figure 3 Conformal mapping:
texture ellipse = unit circle

uo

Figure 2 Elliptical holes in infinite plane under stress at infi-

nity
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K p, = 2.5 GPa
oy | K. (Al, 0,) =3MNm™ 2 2pm
14 1C 2Y3 d
E d=4um @C
{ -4

a=1um
; 1 , i . ) . ) a=05um
0 20 30 40 S0 60 70 80 S0 Bre

Figure 4 Pressurized hole at a fixed distance d = 4 Um from
a crack

* Ki Po= 2,5 GPa
— _ -3/2
oc Yta Kic (Al, 04)=3MNm

) N L= a=0,5um
10 20 30 40 50 60 70 80 90 Bre

Figure 5 Pressurizéd hole at a fixed distance d =3 Um from
a crack g
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Figure 6 Pressurized holes at fixed distances d = 3 um from
a crack
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Figure 7 Pressurized holes at fixed distances d =5 um from
a crack
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Figure 8 Pressurized holes at fixed distances d = 4 um from
a.crack
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Figure 9 Pressurized hole above a crack tip
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Figure 10 Pressurized holes above a crack tip
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Figure 11 Forces along a chord in a sphere of action
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