FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

AN STATISTICAL APPROACH TO FATIGUE CRACK GROWTH UNDER

RANDOM LOADING

J. Zapatero¥* and J.Dominquez**

A method to calculate the fatigue crack growth under
wide band random loading is presented. In this paper
the basic data are the probability density function
(p.d.f.) of stress and one fatigue crack growth rate
equation. The approach is based on a statistical re-
presentation of the increase of crack length at any
cycle as a function of the previous length and the
p.d.f. of stress range. A recursive application of
this approach will produce an expected value of the
number of cycles to produce failure.

INTRODUCTION

The process of fatigue is usually divided, as far as the effects
of calculation are concerned, into the periods of initiation and
propagation of cracks. In some cases the propagation occupies the
greatest part of the fatigue process. It is evident, therefore,
that the development of a sufficiently precise method of calcula-
tion is required.

At the present time, the most frequently employed method in
the analysis of the propagation period is based upon Linear Elas-
tic Fracture Mechanics (LEFM). In the case of loads of a constant
amplitude, the duration of the propagation period is determined Dby
directly integrating an equation that relates the crack growth
rate (da/dN) to the loads. Forman's equation (1) is an example of
this.
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When the loads vary in an irregular or random form the life
is usually calculated by means of cycle by cycle simulation. This
process however requires a great deal of time. To solve this pro-
blem, Barsom (2) and Hudson (3) relate the values of the root-
mean-square stress and stress intensity factor (A SRMS and AKRMS)

produced during the loading process to the growth rate in a simi-
lar way as in the case of constant amplitude. An estimation of the
duration of the propagation process can be obtained by directly
integrating the equation which relates the crack growth rate with

ASRMS or AKRMS'

Presented in this paper is a statistical approximation of
this process based upon the distribution of the stress range in

the load history.

DESCRIPTION OF THE MODEL

The model here presented is based upon the determination of the
expected length of a crack after each cycle of load. When the
crack length reaches the critical value or a previously defined
value it can be assumed that the propagation has been finalized.

Beginning with an initial length (ao), the length after any

cycle n can be expressed as:

A = + da (1)

where a1 is the length of the crack after n-1 cycles and Aan is

the increase in the length produced in cycle n. The expected value
of a, can be written as:

E [an] =Ela,, - Aan] (2)

This equation rewritten can be expressed as:

1 pa ) pla _; pa ) da _, dda (3)

where p(a Aan) is the joint probability density function,

n-1’
which can also be written:

p[Aan, a 1) - p(Aan/an_1] . p[an_1) ()

n-
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where p(Aan, an_]) is the conditional probability density functi-

on.
Substituting equation (4) into equation (3) will give

@ -J
E[an] E[an_1] + é (f)Aan p(Aan/an_1] . p[an_T)dan_1 dha,
o

(5)

Assuming in D(Aan/an—l) that a__, = E[ ], we have after some

a
n-1
calculations:

]+ (f) ha p(Aan/E[a

E[a_] = E[a

. 1 1) daa (6)

n-1

Equation (6) is a recursive formula to determine the expected
length of the crack in each cycle. In order to evaluate this equa-
tion, some expression of Aan and p(Aan/E[anq]) is necessary. To
express Aan we can use any one of the crack growth rate equations
because Aan is the increment of the length of the crack in each
cycle, that is Aan - da/dN. In all of the models of crack growth
based upon Linear Elastic Fracture Mechanics, da/dN is a function
of MK and therefore of AS and a. Given this, we can write:

Aan =f [As, a _1) =t (as, E[an_1]] (7)

The probability that Aan is in the region Aan to Aan ¥ dAan
is equal to the probability that the range of stress in the nth
cycle, which produces the increase in the length Aan is in the

region As to As + dAs. That is:

p[Aan/E[a 1) dpa = = p(As) daAs (8)

n=1
By substituting equations (7) and (8) into equation (6), we have:

©

Ela ] =Ela ]+ /f (as, E[a _;]) p(as) das (9)

891



FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

The integral in this equation represents the expected value
of growth per cycle when the crack has a length an_1 . All of the

components of the equation (9) are known, and therefore we can
determine the expected value of the length of the crack at any
given moment as a function of the length after the previous cycle
and the statistical characteristics of the load history.

Given that the length of the crack and the rate of growth
change slowly, we can approximate the growth rate equation using

intervals of constant length. With a final crack length af and an

initial crack length ao, we can simulate the growth as a series of

small increment a'I:

i = (10)

Where the total increase of length from the first cycle to
the last cycle is divided into H increments, the length at the
peginning of each interval will be: a'o, a' g EEmELE .a'H_1 v Cf s

figure 1. For each increase Aa'I there will be a growth rate equal

to the mean of the rates corresponding to the initial crack length

a' and the final length a' of interval.
I-1 L

In accordance with the preceding equation and also with equa-
tion (9), the number of cycles necessary to obtain a crack length
af must be:

H 2Aa‘I
N, =L
f 1 © ©
I f(as, a1_1) p(as) das + S f(as, aI]p(As)dAs
o o

(11)

© ©
in which [J f(as, aI_1) p(as) das + [ f(as, aI) p(As) das]/2

[} o
is the mean crack growth rate considered in the interval of growth

|l Al
from a';_, to a';.

In a general manner, equation (11) can be written as:
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3 da

(12)

©

o f f(as, E[an_l]) p(As) das
o

=
[}
[

If we express the equation of growth f(as, a), as:
f(as, a) = g(a) -+ h(as) (13)

equation (12) will then Dbe:

f da

£ ()

o«

o gla) [/ h(As) p(as) das
o

If we then employ, for example, the Paris' equation (4), which

fulfills the conditions of equation (13), we will have:

a
N, = [
a

g(a) = ¢ (c(an™ ma)"

and:

h(as) = As"

Thus equation (14) transforms into:

ap da
N, = [ (15)
a

’ij ©
o gla) [ As” p(as) das
o

The integral in the denominator is the mean value of Asn in
the history of nominal stress:

; as” p(As) das = as" (16)
o

We can say:

n
ASpyn = As QT7)

and therefore equation (15) can be written as:
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f
— (18)

n
o g(a) ASRMN

=
[}
W o—

which is a generalization of the equation proposed Dy Barsom (2):

£
N, = J = (19)
a 2
f g(a) ASRMS
where:
_ ==
- 2S5 (20)

When the equation of growth doesn't fulfill the conditions of
equation (13), the general expression is equation (12) or equation
(11) which are the same.

Whatever may be the crack growth rate expression used, the
proposed model requires a previous knowledge of p(As) and also of
af, given that we know the initial length ao. The value of af can

be defined in accordance with a determined criterion or as the
critical crack length after which fracture is produced. In the
latter case, af can be determined by the equation:

KC = F(af) /naf é As p(As) das (21)

where KC is the fracture toughness and F(a) is a function of the

crack length and geometry. The value of af obtained in this equa-

tion can be understood as the most probable value of the critical
crack length.

Two different functions have been used to approximate p(As)
from the ranges produced by the load history. One is the equation
of Rice's proposal (3) and the other is a modification of this.
Both of them have been displaced to the right in order to obtain a
better approximation. The expressions are in order:

As - S A, (As—Aso)Z/o2

p(as) = A, Pt e (22)
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(As-Aso)2 -X, (As—Aso)z/cz

p(As) = Ay —3 e (23)

where ¢ is the standard deviation of the amplitude of the
history and Aso is the displacement of the function. The relation

between the parameters i, and X, in both expressions can be ob-
tained by using the condition:

©

J p(as) d As =1 (24)
o

The approximation of the functions is carried out by employ-
ing a Least-Squares method and by varying the displacement until a
minimal error is obtained.

The probability density function in equation (22) which is
Rice's proposal, will be called function 1 and the other function
2. The figures 2 and 3 represent approximations obtained with
equations (22) and (23) respectively.

RESULTS

The application of the proposed model has been carried out by
means of equation (11). The number of intervals considered is
thirty. Forman's equation (4) has been used as the crack propaga-
tion rate equation f(s,a). This is:

— =C (25)

where C and n are material parameters.

A mean value of R = S /S has been used and, in order to ob-
max min

tain a better prediction, an effective range of the stress inten-—
sity factor (AKeff) has been adopted. This range was obtained

through the application of the crack closure concept proposed by
Elber (5).

To test the proposed model, a number of cases have been stu-
died. The results of these cases obtained with different load his-
tories, have been compared with the results obtained in experi-
ments, and with a limited number of simulations made by other re-
searchers.

The load histories employed have been the same as those used

by the "Fatigue Design and Evaluation Committee" of SAE (6), spe-
cifically "Brake", "Transmission" and "Suspension", and the "A-A"
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and "I-N" used in the "Round-Robin Crack Growth Prediction on Cen-
ter Crack Tension Specimen Under Spectrum Loading" (7) which will
be called "H1300" and "H300" respectively. The materials and test
specimens used are those of the Round-Robin and SAE programs. The
SAE program uses a modified compact tension specimen with a stress
concentration factor KT = 3. The materials used are MAN-TEN and

RQC-100 steels. In the Round-Robin program they used a center-
cracked-tension specimen of 2219-T851 aluminium alloy. Both types
of steel have been used with the SAE load histories and the alumi-
nium alloy with the other two load histories. The maximum levels
of stress produced in each load history with different materials
are shown in Table 1.

The crack closure stresses in the case of the aluminium alloy
have been obtained from the Newman expressions (8) using a value
of R as defined in equation (26). The same values as in the Round-

Robin program have been used for ao and af.

TABLE 1 - Maximum stress produced in each of the load histories
and levels (MPa).

Material Level Brake Trans. Susp. H300 H1300
MAN-TEN 1 176.16 402.69 453. - -

e 151.16 176.16 302. - -
RQC-100 1 402.69 402.69 80L4.75 - =

2 176.16 . 352. = =

1 - = - 193. 248.
2219-T851 2 - = - 144.79 | 186.

3 - = - = 124,

In Figure 4 a comparison of the results obtained in the pro-
posed model with equations (22) and (23) and the experimental re-
sults of the Round-Robin program is shown. In this figure the re-
sults of Hudson (3) are also compared with those from experiments.
In Table 2 a comparison between the results obtained by the propo-
sed methods in (7), by our model and by the experiments is shown.
The indicated values are relations between the calculated lives
and the test lives. In the Round-Robin case the values are the
means of all the predictions methods in (7), and the band within
which they fluctuate.

As can be seen, the results obtained with these load histo-
ries and materials are fairly good. As to the effects of the pro-
bability density functions, the results are better with equation
(22). Equation (23) always predicts a longer life for the same
load history than with the other function. At any rate, all of the
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results are within a band ranging from 1/2 to 2, when related to
the test results.

Figures 5 and 6 represent the results obtained with the three
SAE load histories compared with those of the tests. The crack
propagation in this case is between a crack length of 2.5 mm. and
the failure crack length af. Regarding the two steels used, the

crack propagation threshold value adopted has been:

AKth = 11 MPa vVm

The value of the crack closure stress has been assumed to be
equal to 35% of the maximum in all cases, as proposed by Nelson
(9).

With the proposed model, relatively good results have been
obtained except in the case of the "Suspension" history, especial-
1y at high levels. This history has a mean value of R which is
much less than minus 1 (R << -1). This implies smaller values of
the closure stress than in other histories; however, they are con-
sidered to be of the same value. Furthermore, in the case of high
levels of stress the mean of the minimal nominal stress proves to
be half of the yield stress, with numerous cycles that surpass
this yield stress. This, besides affecting the closure stress even
more, exceeds the limits of applicability of Linear Elastic Frac-—
ture Mechanics.

In as much as the expressions used to approximate the proba-
bility density function are concerned, both equations produce very
similar results. Anyway, the results corresponding to equation
(22) are in more cases a little better than those of equation
(23).

TABLE 2 - Comparison between Results in (7) and those obtained by
the proposed Method (Calculated Life/Test Life), using
Equations (22) and (23)(Functions 1 and 2 respectively).

level (table 1)

History Case 1 2 3
Round-Robin 1.20+.11 1.60+.64 -
Function 1 1.29 1.60 -

H 300 Function 2 1.45 1.80 -
Round-Robin 1.03+.30 .99+.21 | 1.47+.43
Function 1 1.03 1.14 1.24

H1300 Function 2 1:32 1.36 1.41
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CONCLUSIONS

Upon examining the results obtained, it can be stated that, when
the sequence effects are not very strong the proposed model can be
employed to rapidly determine the duration of the crack propagati-
on period as efficiently as other methods of simulation.

The greatest advantage of the proposed model is that its ra-
pidity does not result in miscalculation. The time of the calcula-
tion is constantly maintained independent of the life and of the
number of cycles in the load history. This permits us to use lar-
ger histories which characterize the variations of the loads in a
more exact manner.

rhe principal inconvenience of the proposed model is the dif-
ficulty to consider, at least in a direct manner the effects of
the sequence.

SYMBOLS USED

a, = initial crack length (m)

ac = final crack length (m)

a, = crack length after cycle number n (m)

da/dN = crack growth rate (m/cycle)

E[an] - expected value of a_ (m)

K, - eritical value of K to fracture (MPa vm)

KT = elastic stress concentration factor

Nf = number of cycles to failure

p(x) = probability density function (p.d.f.) of x

R = cycle ratio Kmin/Kmax

X = mean value of X

xRMS = root mean square value of X

Aan = increase of length produced by cycle n (m)

AK = range of stress intensity factor (MPa vm)

AS = range of nominal stress (MPa /m)

Aish, = parameters of the probability density function of ran-
ges

g = standard deviation
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Figure 4 Comparison of experimental (8) and predicted
cycles to failure for 2219-T85 aluminum alloy.
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Figure 5 Comparison of experimental (7) and predicted
cycle to failure for MAN-TEN.

901



FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

7/
— 8 s
n 10 %/
e v
o s
a 107 7
~ 40
° 1
g & ’
o 10" -+
-
o]
g
& 199+
[T
zZ
1044 A Equation (23)
0 Equation (22)
103 i i ¥ + +
103 10% 10> 10° 107  10® 10°

Nf by test (cycles)

Figure 6 Comparison of experimental (7) and predicted
cuclyes to failure for RQC-100.
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