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3 RFLIABILITY ANALVSIS OF FATIGUE CRACK GROWTH UNDER RANDOM

LOADING AND LIFF PREDICTION

Based on a fracture mechanics approach, a
mathematical model for predicting the reliability of
components subjected to random fatigue loading has
heen developed by applying probabilistic techniques.
The analysis includes the influence of the loading
and material variance, geometry and crack shape. The
model has been applied to predict the distributions
of crack length and fatigue life, the theoretical
caiculations have been shown to be in good agreement
with the results of Monte-Carlo simulations and
experiments

Fatigue life prediction is an essential requirement in engineering
calculations in which the fracture mechanics approach often depends

on the Paris Law (1) which relates the crack growth rate aa gnx to
the stress intensity range aK

da a(AK}n (1)
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where both « and n are material constants which can be determined by
experiment using sinusoidal loading and conventional specimens. To
assess the fatigue 1ife of componenets under random loading,
variability of the loading and material strength, geometry of the
specimen and crack, should be considered. Random loadings are
classified into broad and narrow band according to the width of
their spectral density, see for example Fig 1. For narrow band
loading, the probability distribution function of the peaks X is
known to be the Rayleigh distribution
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pix) = exp |

o is the r.m.s of the signal. The PDF of the ranges S is then

p(sS) = —_— exp ( - Y anmemama (3
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For broad band loading. cycle counting methods (for instance,
Matsuishi and Endo (2), Teichmann {3)) can be used to found a series
of cycles of same fatigue effects. It has been suggested (Hancock
and Gall (4)) that the PDF of S in non-c mensional form can be
expressed as
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where both » and m depend upon the spectral density W(f). In this
work. the variability in material strength is considered by treating
« in the Paris law as a random variable. The theoretical model has
been applied to predict the distributions of crack length, cycles to
grow a crack to a specified length and the component life, the
results are compared with Monte-Cario simuiations and experiments.

THF_MFAN CRACK GROWTH RATE

The expression for the siress intensity range has a general
P
rorm

AK= £ S v(ma) e (3)

where f is a function of the geomelry. substituting this into Eq 14
the non-dimensional form of the Paris law becomes

d( “/ag) n n
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For convenience, let
it - ?.
2
= o®ag © aeeeeeeas (7

where a, is the initial crack length. Since the appliied range is
uncertain, the crack growth rate at length a is a random variable
whose mean vaiue 1is

- da _ (v nr” <n g
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Given that Y, is the mean of s, then for narrow band loading

n

By o= ElgP] <(8 62 ) 2T (5= - 1) e (9)

where () is the gamma function. For broad band loading

I i :
My o= E[gN] =( yo )T T —== - 1) e (10)

As an example, Fig 2 illustrates the crack length against the
number of cycles which would result from a central crack in an
infinite plate growing at the average rate and the average plus and
minus one and two standard deviations. ihe ecuation for the central
line is

* D e n:o N
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BUTTONS OF CRACK LENGTH AXD LIFE

The crack length is given by summing the increments of crack on each
G

cycle. Eq 11 can be rearranged to give
ar a . N
Jay d{" /a0 s n
. 0 S () L (12)
n: s o
n #9 1=1
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shere ag is the final crack lenth and N is the number of cycles. The
summation in the right hand side of this equation is a randomn
variable, whose probability distribution can be described by the
central limit theorem, thercfore the le“t hand side is also a random

variable which is denoted as X

caf - [
Liag A"y,
- | : B (13)
! n /2 ns,
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The distribution of X determines the distribution of 2f/a, which
is expressed as
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fnllowing a similar argument, the distribution of cycles to grow

a crack to a fixed length is found
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1t can be shown that the central part of p{X), i.e when N is not

allowed to differ too much from its mean, is approximately a normal
distribution with the mean of N as

X 01\
N = e (16)
PRY

Egqs 14 and 15 are applicable for both narrow and broad band
loading. In order to illustrate the applicance of the model,
Monte-Cario simulations and theoretical results for cumulative
distribution are presented in Fig 3, 4, 7 and 8. In Fig 5 and 6, the
effect of x and n on My has been shown.

MATERIAL VARTANCE AND EXPERIMENTAL COMPARISON

By treating one of the material parameters., « as a random variable,
the effect of variance in material strength has been introducedinto
the model ( Huang (3)). This enables the comparison to be extended
to experiments satisfying the conditions laid down during the
deduction, for instance the experiment by Talreja (6). 1In his
experiments, narrow band random loading of o = 182.4 MPa and mean
stress Sy = 167 MPa was applied to Cr-Mo-V steel bars of cross
section 10x13 mm dimensions containing an initial crack of 0.05 mm
deep on one of its 15mm faces. The data are presented in Table 1 in
terms of period ( each 200x12.5 cycles ). Since Group 2, 3 and 4 are
not comparable, they are omitted.

TABLE 1 - Eperimental Data from Talreja's Paper
Group 5 and 6 Were Tested for 150 and 200 Periods

wx" jndicates " the Rest of fhgﬁgggggvtn{giigg:
Group Specimen Periods of Loading to Failure
No. No. 1 2 3 4 5 6 7 3 9 10 11 12
1 95 101 144 145 160 163 171 220 235 296
(10 specimens)
5 137 149 +
(30 specimens)
6 132 136 131 132 139 159 176 18C 184 188 199 ®

(18 specimens)

e e T e
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To establish a base for the comparison, it is assumed that n in
the Paris Law is 3 and the shape of the crack follows a preferred
route (Scott and Thorpe (7)), so that stress intensity correction
factor f for the deepest point is evaluated accordingly (Holdbrook
and Dover (8)). The definition for failure is when the crack
penitrates three quarters of the material thickness, the input of M«
- 1 15%10 end 9 = 2.76x10 into Eq 43 produces good curve fitting
to the data of Group 1 as shown in Fig 9. Using the defined
parameter values, from the theoretical model, survival probabilities
after 130 and 200 periods of loading are found to be 72.48% and
35.80% which are in good agreement with the experiment data of 93.3%
and 38.9% respectivel

An efficient method for assessing fatigue 1ife has been
demonstrated. The relation between data obtained from conventional
rests and from fatigue tests on components has been found and
checked against experiment.

The mean life of components is nearly a linear function of X,
which is a parameter consisting of «, initial crack length and the
stress amplitude, while it is much more sensitive to the exponent n
in the Paris law when n is small rather than large. Any increase in
either X or n causes a decrease in the mean life.

In case of significant interaction between cycles, this method
may not produce accurate predictions without proper modification.
Moreover, the present failure condition is when the crack propagates
to a critical size, which is appropriate because of the large growth
rate close to fracture of the component. To include these effect
into the model, more rescarch is needed.
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SYMBOLS USED

ar = final crack length

ag - initial crack length

a = crack length

a* = length of the crack with average growth rate
E = the mean of
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f - geometricai calibration factor
m = a parameter depending on w(f)
N = number of cycle

n = exponent in Paris law

pPi - probability density function
s = stress range

w = power spectrum of the signal
X . a value defined by Eq 13

X = peak of narrow band signal

« - factor in Paris law

b4 = a parameter depending on wW(f)
o - the r.m.s. of the signal

b - a facter defined by Egq T

r{ ) = Gamma function

p, = average of s

6, =r.ms. of gt

My - verage of cyclie numbers

H = mean of «

oy =r.m.s of «

AK - stress intensity range
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