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J ASTRAY AND BACK TO NORMALCY

David Broek*

Complicated J-estimation schemes are shown to be ar-
tificially elusive. They can be dramatically simpli-
fied, becoming almost trivial, by eliminating the
artificialities. This results in a "new" and simple
estimation scheme. New between quotation marks, be-
cause the essence of this and other schemes was pu-
blished already in 1972 (Liebowitz and Eftis), but
never given recognition.

INTRODUCTION

The J-integral is useful for fracture analysis of structures
if it is possible to express J as a function of crack size and
applied stress. Only in that case can the equation J = JR be sol-

ved for a certain crack size to obtain the fracture stress of a
structure. Several such expressions have been proposed; since they
are obtained indirectly, they are generally referred to as estima-
tion schemes.

The oldest and best known estimation scheme is the one used
in the ASTM specification for JR testing. This scheme is useful
because it permits generation of JR curves from tests on simple
specimens. However, it cannot be applied to structures using the

reverse operation - obtaining the stress from JR'
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Paris and Tada (1) used the idea of expressing J in terms of
the area under the load-displacement diagram. This can be applied
to obtain the fracture stress if the load-displacement diagram for
the structure is known, and can be expressed in mathematical form.
Paris and Tada (1) developed an approximate procedure to estimate
the shape of the diagram. The main difficulty with this scheme is
that the displacement should be the one due to the crack only.
This condition is almost automatically fulfilled in the case of a
compact tension specimen because the load is applied close to the
crack, so that practically all displacements are due to the crack.
Estimations of the displacement due to the crack in a structure
require rather coarse assumptions.

Kumar et al. (2), (3) developed a rational estimation scheme
on the basis of a mathematical expression for the stress-strain
curve, the Ramberg-Osgood equation. The resulting expression for J
contains a geometry parameter that can be obtained for essentially
any structure by means of finite element analysis in much the same
way as the geometry parameter in the stress intensity factor. As
Kumar et al. (2), (3) obtained geometry factors for a limited num-
ber of geometries, the procedure presently has applicability.

It is somewhat unfortunate that Kumar et al. (2), (3) elected
to normalize with respect to an arbitrary flow stress and associa-
ted limit load, which has led to an elusive expression for J. It
Wwill be shown in this paper that (trivially) this expression can
be much simplified, and more important, follows in the same form
from Neuber's rule. An interesting consequence is that the geome-
try factors in J can be related to those in K, which leads to a
new and simple estimation scheme.

THE ESTIMATION SCHEME BY KUMAR et al. (2), (3)
STRESS-STRAIN CURVE AND G

The Ramberg-0sgood equation consists of a linear part
(Hooke's law) and an exponential part representing the plastic
strain. In its simplest form the equation is written as:

+[f,’— (1)

In a log-log plot of stress and strain (figure 1), the curve
has two asymptotes, one representing the elastic strain, the other
the plastic strain. The slope of the first is equal to 1 (elastic)
and the intercept with the abscissa is log (1/E). The slope of the
second is n, the intercept with the abscissa log (1/F). Note that
three parameters E, F and n are needed and no more than three.
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The plastic strain is given as:

n

B = %— (2)

From a log-log plot of stress versus plastic strain the para-
meters F and n are obtained as slope and intercept of a straight
line fitted through the data, as shown in figure 2. (In the origi-

nal Ramberg-0sgood equation FWn was called the "flow stress";
this definition of flow stress has some physical significance,
because it is the stress for which the strain is unity).

Kumar et al. (2), (3) normalized the equation to:
e =¢_a(2) (3)

by introducing a reference stress and a reference strain. Instead
of two, the equation has now three parameters, two of which must
necessarily be dependent. The reference stress must necessarily be
dependent. The reference stress must be related to the reference
strain by Hooke's law. A comparison of equations (2) and (3)
shows that:

@ = — (4)

Since, apart from n, the curve is governed exclusively by F,
it is permissible to use any value for the reference stress (the
reference strain follows from Hooke's law), and then determine a
from F by means of equation (4). Calling the reference stress the
"flow" stress is misleading, because it suggests that an arbitrary
reference stress has a certain physical meaning.

For the case that n = 1, equation (2) reverts to the elastic
equation. For that situation J is already known to be J=G=K2/E.
The expression for the stress intensity is:

K =28 ¢ v/ma (5)

8o that J in the elastic case is given by:

J=8*mm0¢€a=nmB2 g2 a/E (6)
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THE "PLASTIC" J

For a material with an exponential stress-strain curve Kumar
et al. (2), (3) obtained the following expression for J:

P )1’1*‘1 (7)

where h, is the function of geometry (and n) already referred to
in the INTRODUCTION. Further, c represents the uncracked ligament,
P the applied load and PO the "limit" load based on the reference

stress. Since the reference stress is arbitrary, PO is not a

"true" limit load.

Obviously:
P = f(geom) x ¢
Po = g(geom) x 9y
c/a = k(geom) (8)

where f, g and k are functions of geometry (and a).

Substitution of equations (4) and (8) in (7) provides:

% x g 1
J=—Fo,¢,kan, ( - ) (9)
o o
which reduces to:
1k n, £ n+1
Jd = 7 = ag =\Aoge a (10)
g
with:
n+1
N = kb £ (1)
n+1
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SIGNIFICANCE

The equation for J proposed by Kumar et al. (2), (3) gives
the false impression that J depends upon the limit load. Natural-
ly, J cannot depend upon an arbitrary limit load or on any limit
load. Because the exponential equation for the stress-strain curve
is unlimited (as is the linear equation), a limit load cannot en-
ter the problem. Equation (10) shows that the limit load can be
divided out indeed; it does not affect the equation.

Why then does A in equation (10) depend upon the geometry
function g for the limit load through equations (11)? Also this is
artificial , because also h, depends upon this function since
equation (9) was used to derive h, from the finite element re-
sults. Hence, that effect will be divided out as well. Had equati-
on (10) been used to derive A, the effect would not have appeared.

As a matter of fact it is easy to use equation (8) in the
expression for G, which then becomes:

2 2

2
G=82n%5uoeoa(g—)=ooeoaY(%-J (12)
o o

with:

Y = B2 (13)

Ce

Now G seemingly depends upon a limit load. But equation (13)
is the same as equation (6). If equation (13) is used the limit
load will be divided out automatically.

Obviously, the equation (10) for J would be much easier to
use than the elusive equation (7), had A been calculated. Only one
geometry parameter would be necessary. Instead, four geometry
functions must now be used, namely h,, f, g and k. Of course any
user can, once and for all, calculate A from the given h,, f, g
and k, and from then on use the much simpler equation (10).

A NEW ESTIMATION SCHEME

Equations (6) and (10) are repeated below:
J =7 B2 g% a/E (14)

J =1 o™ ar (15)

Clearly, the two are identical. For the second equation to be

valid, it must be valid for the case that n = 1 and E = F, which
is obviously the case. It implies that:
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A(geom,a,n) = (8 /n)nﬂ or may be ) = n(B)n” (16)

This equation opens a new perspective. It provides a means to
estimate X (or J) directly from the (already known) geometry func-
tions for K. No non-linear finite element analysis is necessary. A
new and very simple estimation scheme is available if its use can
be demonstrated to provide accurate predictions of fracture
Stress. Although equation (16) may be questionable from a theore-
tical point of view, it may serve as a basis for an estimation
Scheme.

For cases with known B and h,, X can be obtained in two ways:
with equation (11) and with equation (6). Good agreement was ob-
tained for many cases, poor agreement in others. However, it is
not the value of A (i.e. J) that is important; the crucial questi-
on is how well the scheme would predict fracture stresses. Exam-
ples of predictions will be shown in the next section.

Confirmation of the connection between linear elastic (K) and
non-linear (J) parameters can be obtained by using Neuber's rule.
Neuber's rule essentially states that the product of local stress
and local strain at a notch after local yielding is equal to the
product of local elastic stress and local elastic strain obtained
from purely elastic considerations (with the same applied or remo-
te stress in the two cases).

Applying this to the crack tip, one obtains:

2
“e e i

where q is a numerical factor depending upon Poisson's ratio. By
using the exponential stress-strain relation this can be modified
to:

K2 1/n+1

g, = B['ZWTF) (18)

where B depends upon q and n.

Equation (18) is indeed the equation for the crack tip stress
field as obtained on the basis of J for non-linear stress-strain
curves. In that case J would appear in the numerator, but other-
wise the equation would be the same. Then J and K are relatable
through n, or rather A and B (the geometry factors) are relatable
through n, which is what equation (16) attempts.

Giving credit where credit is due, it should be mentioned
that already in 1972, Liebowitz and Eftis (4) published a paper on
the effects of non-linearity. Essentially, equation (15) as well
as the Paris and Tada estimation scheme (1) follow from the work
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of Liebowitz and Eftis (4). A useful J-estimation scheme was avai-
lable 15 years ago. Instead the paper (4) was ignored (not by the
author of the present paper, but regretfully, he failed to see the
implications).

APPLICATION

Fracture stress predictions (maximum load) were made using
both the scheme by Kumar et al. (2), (3) and the new scheme. For
comparison, test data reported by Kanninen et al (5) were employ-
ed. These are for SS304 center cracked panels. Predicted stress-
crack size curves from both schemes are shown in figure 3. These
curves show crack growth initiation and maximum stress (instabili-
ty if load control) in comparison with actual test data (5).
Figure 4 shows a comparison of the calculated J. Fracture stress
predictions for pipes with circumferential cracks in bending are
shown in figure 5. The B used for this case is the one obtained by
Erdogan and Kibler (6); the test data shown in comparison, stem
from Kanninen et al. (6). Figure 6 more clearly shows the predic-
ted amount of stable crack growth up till maximum load (load con-
trol analysis); the amount of stable growth predicted at maximum
load is larger than in the tests.

A more thorough evaluation of the new scheme is necessary.
However, the scheme is a by-product. The main purpose of the above
discussion was to demonstrate the stripped down expression for J.
Also, the actual estimation scheme used is not of much practical
importance, as will be demonstrated below. It is the value of n
that is the biggest driver in the accuracy of predictions.

ACCURACY

There is often much concern about the very large variations
occurring in J and (consequently) JR' The reason for the large

variability is obvious: in the calculation of J the stress is ta-
ken to the (n+1)th power. Hence, a slight error in stress of 5%,
with e.g. n=9, leads to a difference of (1.05)'°= 1.63, i.e. a
difference of 63% in J. (Note that the same occurs with other J-
estimation schemes, that determine J from the load-displacement
diagram: where the load-displacement diagram becomes almost ho-
rizontal, the value of J changes dramatically with a slight change
in load or stress).

This may be bothersome for researchers, but it is of little
practical importance. An engineer could care less about the value
of J, as long as the procedures predict the stress or load a
structure can carry. This is, of course, the saving grace in prac-
tical applications. If one calculates a fracture stress or load,
the problem discussed in the previous paragraph works to our ad-
vantage: a difference of 63% in JR with n = 9 will lead to only a
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difference of 5 % in the predicted fracture stress or load

(1.631/10 = 1.05). If the elastic part of J is small with respect
to the plastic part, the stress for crack growth or fracture fol-
lows from (a/JR(n+1)).

If the elastic J is not negligible, the stress is obtained by
iterative solution, but the dependence on n is still strong.

For a difference in JR by a factor of 2, and for n = 7, the
fracture stresses would be different by 21/8 = 1.09; hence the
error (difference) would be 9% only. This is clearly demonstrated
in figures 7 and 8. These show two runs with exactly the same in-

put, with n = 7. Two JR-curves were used with differences in JR of

approximately a factor of 2 throughout. The scheme of Kumar et al.
(2), (3) was used to obtain the predictions in figure 8. Clearly,
the predicted fracture stresses differ only by a small amount. In
general the stresses in a structure will not be known with better
accuracy, so that any of the predictions in figure 8 would be sa-
tisfactory from an engineering point of view. Even the predicted
amounts of stable crack growth at maximum load do not differ very
much, as shown in figures 9 and 10.

Indeed, in particular for larger n, the value of JR’ and hen-

ce the calculated J, are of little influence on the predictions of
fracture stress (which is the purpose of the analysis). Conse-
quently, it does not matter very much which estimation scheme is
used. Also, comparison of estimation schemes on the basis of how
well they predict J, are rather meaningless, even if the schemes
provide largely different J. The important question is how well
the schemes predict fracture stresses. This depends much less on
how J is calculated than on the value of n. For the same J (JR) a

difference of 10% in n can indeed have considerable effect on the
calculated stress. However, n is not a parameter that can be ad-
justed or improved: its value is dictated by the material.

In view of the above, a final note is in place concerning the
futility of sensitivity studies. Clearly, the results of the Kumar
et al. (2), (3) scheme are insensitive to the choice of reference
stress and reference strain, because both of these will be divided
out. Remain the sensitivity to a and n.

Naturally, one can play analytical games varying a and n, but
these are meaningless. After all, fracture prediction is not an
analytical game: it deals with real materials. Both a and n are
determined (fixed) by the material's stress-strain curve. Whether
analysts like it or not, these parameters cannot be selected arbi-
trarily.
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Then there remains only one sensitivity study of relevance.
This is for the case that the material's stress—-strain curve does
not obey an exponential equation. Most alloys satisfy the equation
fairly well, so that there can be no argument: a and n are what
they are and cannot be played with. However, 304SS is an excepti-
on: its stress-strain curve cannot be fitted with an exponential
equation. Yet, it must De fitted to an exponential equation,
otherwise none of the schemes will work. In that case, and in such
cases only, there is a choice: should the equation fit the lower
or the upper part of the stress-strain curve? Note that in this
case there is only one choice: either F(a) or n can be chosen
freely, the other parameter then being fixed by the fit. Any arbi-
trary choices of both parameters are meaningless.

This paper is not the place to suggest whether the upper or
lower part of the stress-strain curve should be fitted. However,
common sense leads to the immediate conclusion that the decision
Wwill have to be made on a material-by-material basis and only for
those materials not obeying an exponential stress-strain curve
(for other materials there is no choice). When there is a choice,
what was said about accuracy and the effect of n applies: it is
not the value of J that matters, but the predicted stress.

CONCLUSION

The elusive complexity of existing J-estimation schemes was
shown to be trivially artificial. A simple equation for J shows
the way back to normalcy. It also shows the possibilities for a
new scheme with geometry factors that are more easily obtainable.
The new scheme requires much more evaluation. However, as was
shown, J is not very influential in the calculation of fracture
stresses, so that the simplest possible scheme is probably adequa-
te. Large differences in J or JR do not affect the predicted frac-

ture stresses very much. The most influential parameter in the
predictions is the strain hardening exponent.
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SYMBOLS USED

crack size

uncracked ligament
Young's modulus

geometry function
"plastic" modulus

elastic energy release rate
geometry function
geometry function

J integral

geometry function

stress intensity

strain hardening exponent

= load

distance from crack tip
stress-strain curve parameter
geometry factor in stress intensity
geometry factor

= strain

geometry factor in J
stress

elastic

local

reference value
plastic

'O O KO
nonon
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