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APPLICATION OF A GLOBAL-LOCAL BLENDED TYPE FINITE
ELEMENT IN THERMAL FRACTURE

J.M.Martinez Esnaola*, I.Miranda*, J.M.Bastero**

In this paper, a new special finite element
is presented in order to reproduce the stress
singularity near the crack tip. Two alterna-
tive methods for quasistatic crack growth
simulation have been developed. The applica-
bility of this formulation in problems with
thermal stresses is shown, and numerical re-
sults are presented. ”

INTRODUCTION

problems of thermal fracture are relevant in many indus-—
trial applications. Thermal loads modify fracture analy-
sis in two ways. Firstly, material properties are diffe-
rent in each part of the structure. On the other hand,
many ordinary formulations used with the Finite Element
Method are not able to solve fracture problems when ther
mal strains are present. Tt is well known that the Rice's
J integral (1) does not work and has to be modified in-
cluding an area integral next to path integral (2)-(5).

In this paper, two different methods for propagation
analysis are shown. These methods are founded on a new
special finite element (6), with global-local blended
functions, that confer a good capacity in modelling the
crack tip. ¢
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Finally, results of an example are discussed. That
example concerns to the evolution of the stress intensi
ty factor, Kyi. when crack grows in a structure under a
strong thermal gradient.

CRACK MODELLING AND GROWTH SIMULATION

A new special finite element. Crack modelling

This new special finite element, like the Benzley's
one (7), uses a global-local formulation, that was deve -
loped by Mote (8). The displacement field is interpola-
ted by the expression

ui=Ni.d.+H B- (1)

373774373
wheré:
u, is the displacement field
N the local shape functions

H;J the global shape functions
djgﬁjunknown parameters

Expression (1) must be modified when is used to sol
ve a bidimensional fracture (mode I) problem and d. is
wanted to represent nodal displacements. Then (1) ~has
to be changed by

uy = u o= Npydy o+ KI(FI1—N1jF%1) )
u, =V = NZjdj + KI(FIZ'NZjF%Z)
j=1,2,+..0 (number of nodes)
where K. is the stress intensity factor, F_. the .theore-

tical linear fracture mechanics functions, ind FI. the
nan Ii
value of FIi at "3j" node.

The special finite element presented in this paper
is an eight-noded rectangular one, and the crack tip is
always placed at an intermediate node, like 6 of Figure
1.a.

The shape functions N,. are the ordinary ones of iso
parametric finite elements? except those corresponding
to 5,6,7 nodes -Figure 1.b-, which are -see Figure 2-

‘]_g
_n-pHpa-m 1 6
= i -3 N, - N

N. = N = N 4 5 6
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1+&

L enamm 1y o 8

Ny = Nyg = Nyg = ) 2 Vg 7— Ng
(3)

S _ueamm
Ng = Nqg = Nog = “2(1+E() 1<E<te

-—_Ml:‘_“l
Ng = Nqg = Nog = "2(1-E,) et <1

Local coordinates (¢£,n) come from general ones (x,vy)
by a homogeneous linear transformation.

Wwith these global—local blended shape functions, no
dal constraints of nodes 6 and 7 can reproduce exactly
kinematic restrictions of cracks -see Figure 3.a-, whi-
le ordinary shape functions of isoparametric finite ele
ments only are able to reproduce them when the crack
tip is placed at nodes 5 or 7, but not in an intermedia
te position -see Figure 3.b-. -

The lack of compatibility between the special inter
polation defined by means of equation (2) and the isopa
rametric one of the standard finite elements has been
overcome by defining a special class of transition ele-
ments surrounding the special finite element which con-
tains the crack tip. Thus, crack is simulated as shown
in Figure 4, in which special finite element is signifi
cated by A, transition finite elements, by B, and ordi-—
nary isoparametric finite elements, by C. The displace-
ment field at B elements 1is interpolated by the expres-
sions,

i
o
"

_ 3J
uy Nyydy+KS (Fpy Nis5F1q)

(4)

=V

1]

J
Uy N,3d5+K S (Frp-Np3F12)

Here, S represents a shift function, such that it
equals 1 on the boundary adjacent to the special element
A, and equals 0 on boundaries adjacent to standard ele-
ments (type C elements) -see Figure 4-, and N, are now
ordinary isoparametric shape functions. J

Crack growth simulation

To simulate the crack growth a mesh displacement
technique has been adopted, in two different ways. The
first one simulates the crack like Figure 4 shows: the
crack tip is always placed at the middle point of the
lower side in. the special element A. When crack grows,
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element A moOvVes with the tip, and elements B distort
adapting their size to elements C, which do not change.
When some elements B increase their size up to a given
average, the mesh 1is regenerated as it is shown in Figu
re 5. )

The second way allows the crack to move along the
side of the special element. Evidently while it is hap-
pening, the mesh does not change with exception of the
node in which the crack tip is located. The mesh regene
ration takes place when the tip reaches the corner of

element A. Figure 6 shows an example of that process.

Before ending, it is worth noting that when the crack
tip reaches the corner of A element, the global—local
blended shape functions must be substituted by a glo-
bal-local formulation with ordinary shape functions.

THERMAL LOADS

The Constitutive Law of a locally isotropic linear elas-
tic medium 1is

oij=)\ur,r61j+u(ui,j+uj,i)—yTGij (5)

where )\,u are Lame's constants, y:a(3%+2u) -0, linear
thermal dilatation constant-, and T temperature incre-
ment from thermal equilibrium one. In a general case,
A,u and o are temperature functions.

Let us admit that temperature distribution is regu-
lar, then it is easy to understand that thermal effects,
represented by YT in equation (5) do not affect the
singular stress fieid at crack tip neighbourhood, and
can be taken into account by means of the polynomial
functions of the global—local formulation.

Using the assumption given by equation (2) in a stan
dard finite element formulation, the stiffness matrix
for the special element, V&, becomes

nny o 0I

K (K}
1€ = L———]——{— ----- (6)
nI}T|l KII
where

KD =

15 jve D 1mn Nki,1 "mj,n <y (7)

658



FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

nl
By = fve Dy 1mn Nki,l Gm,n a (8)
II
K~ = jve B lel Gy, 5 av (9)
where D is the elastic tensor, and Gi representsthe

term ink%¥3ckets of (2).

The equivalent thermal loads in the special finite
element are evaluated as follows:

o {F"}
{F} = T (10)
F
and
n o
Fy = Jve Diimn Mki,1 fma &V Ly
o= D G e av (12)
ve klmn k,1 mn
where
o
Eoin = YTdmn (13)
It is worth noting that the functions G, . show a

r—% singularity at the neighbourhood of thelcgack tip,
and hence a special integration technique is required to
evaluate stiffness matrix and thermal loads. Neverthe-
less that singularity is not an important difficulty be-
cause it must be taken into account only for the special
element A.

Besides, the local blended shape functions, defined
in equations (3), produce a discontinuity of the deriva-
tives Njq k- Due to it, integrals (7),(8),(11) have to
be evaluaéed dividing the special finite element in sub-
domains where those derivatives are continuous.

RESULTS

The special finite element and two ways of modelling
crack growth have been used to solve the quasistatictheg
mal propagation of the specimen shown in Figure 7, sub-
jected to a constant temperature gradient and with an
initial crack (ao/w = 0.2).
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Evidently, crack propagation and arrest depend on
Kic and Kqg local values; but for the scope of this pa-
per, it is enough to get the evolution of K1 when crack
rows —-for instance from a/w=0.2 to a/w=0.75-. wWilson
and Yu (2) studied this same case, using an invariant
integral, J*. They got that the adimensional parameter

KI(1—v)
KE = —3 (14)
EaTo(ﬂa)

when a/w=0.5, was between 0.4975 and 0.5114 according
to integration paths.

For symmetry, only the upper half of the structure
has been modelled. The finite element definition of this
problem is depicted in Figure 8. A mesh with 28 eight-
noded elements has been used and crack growth has been
simulated by constant steps of length pa/w=1/140. It is
worth saying that in the first way of simulating crack
growth —special finite element moves together with crack
tip-, finite element mesh is regenerated when some B fi
nite elements change their size more than 50%; and that
in the second way _crack tip moves along the special fi-
nite element A- we got the pest numerical precision in
leaving out blended formulation when the crack tip is
closer than %¥0.05e to the vertex of the finite element
A (e=special finite element length).

Results obtained with these techniques are shown in
Figure 9, in which 1abels 1 and 2 refer to the two dif-
ferent ways used for simulating the crack extension. In
particular, for a/w=0.5 a value K*=0.5008 has been ob-
tained, which is in very good agreéement with the results
of reference (2) indicated above.

Even though in this example the material properties

were constant, the computer 1mplementation has been con
ceived to accept temperature dependent properties.

CONCLUSIONS

A new special finite element with global-local formula-
tion has been presented. Local shape functions of "blen
ded" type are introduced to model correctly the crack
tip. Two alternative ways of simulating the quasistatic
crack extension have been developed, and the application
to thermal stress fracture problems has been presented.
Numerical results show a high efficiency in evaluating
stress intensity factors.
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SYMBOLS
a - crack length
dj = nodal displacements
Dijkl - elastic tensor
E - Young's modulus
Fry _ theoretical functions of LEFM for displacement
field
{F} - force vector
Hij = global functions
K - stress intensity factor for mode 1
Kf - adimensional parameter related to Kg
[K] - stiffness matrix

- local shape functions

ij

S - shift function

T - temperature increment measured from the refe-

rence state

ui(i=1,2) - displacements

a = linear thermal expansion coefficient

B = unknown parameten;associated with the global
] functions

E?j - thermal strain tensor

£,M - local coordinates

Al - Lame's constants

v _ poisson's ratio

o r - stress tensor
1]
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Figure 1. Quadrilateral element mapped into a square,
with node 6 arbirarily placed.
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Figure 2. Blended shape functions for nodes 5,6 and T«
3 2 L) A
(a) (b)
Figure 3. Nodal constraints: a) Isoparametric
b) Blended
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Figure 4. Special element (A) Figure 5. Moving element
and transition elements (B) . procedure.
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Figure 6. Moving intermedia- Figure 7. Edge cracked strip
te node procedure. subjected to thermal loading.
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te element mesh

Figure 8. Fini
the strip.

of the upper half of

*
-
~
0§ s 0@ 0% 0 0.7
a/w
Figure 9. Normalized stress intensity factors for quasis
ing element, (2)moving intermediate node.

tatic propagation: (1) mov.
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