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CALCULATION OF ENERGY RELEASE RATES FOR AN AXISSYMMETRIC CRACK
PROBLEM USING THE IMPROVED MODIFIED CRACK CLOSURE INTEGRAL METHOD

Seske
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H. Grebner and F.-G. Buchholz

In combination with the FE-method the improved modi-
fied crack closure integral method is used in order to
calculate the linear elastic fracture parameters for
a crack problem with axial symmetry in form of a pen-—
ny-shaped crack, extending in a circular cylinder. The
cylinder is loaded either by axial tensile forces or
by torsional moments, creating Mode I or out of plane
Mode III conditions at the circular crack front. As
mentioned above the energy release rates Gy and Gpjyg
and therefrom the corresponding stress intensity fac-
tors Ky and Kjyyp were calculated as functions of
crack/cylinder diameter ratio. In both cases the re-
sults are in good agreement with correlating reference
values available in the literature.

INTRODUCTION

For the linear elastic fracture analysis by the aid of the finite
element method (FE-method) there are available various numerical
procedures such as extrapolation methods (Chan et al (1)), superpo-
sition methods (Bueckner (2) and Hayes (3)) and numerous kinds of
energy methods (4-14). Thereof the improved modified crack closure
integral method given by Buchholz (14) has proved to be a very
straight forward and highly effective numerical procedure, in combi-
nation with higher order finite element discretisations of a cracked
structure. The main advantage of this local energy-type method
developed from RYBICKI and KANNINEN's modified crack closure inte-
gral method (9) is the fact, that for plane mixed-mode crack prob-
lems it delivers simultaneously the separated energy release rates
Gi(a), i=I,1II from just one FE-analysis per crack length a. Further-
more these characteristic fracture parameters or the corresponding
stress intensity factors Kj, 1i=I,II can be calculated from a very
limited amount of crack tip data, generated by every standard FE-
code.
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The following investigation will show, that the method can also
be applied successfully to a non-plane crack problem with axial sym—
metry in form of a penny-shaped crack, located concentrically in a
circular cylinder of finite length (Fig.3). The cylinder will be
loaded either by axial tensile forces or by torsional moments, res-—
pectively (Fig.4), creating crack opening Mode I or out of plane
Mode III conditions at the circular crack front perpendicular to the
axis of rotation of the cylinder.

CRACK CLOSURE INTEGRAL METHOD

Referring to Fig. 1 and its notations for a pure Mode I condition
one can write in accordance with IRWIN (4) the following well known
crack closure integral relation

x=8a
dan _lim 2 1 _ _ Rl _ (1)
tda —GI(a) =%0s0 Ba J Eoyy(r—x,¢—0,a)uy(r—6a x,0=",a+8a)dx.
x=0

Equation (1) states, that for an elastic structure the change of the
total potential

M(a) =W(a) - U(a) (2)

due to a crack extension from length a to a+8a is equal to the
correlated energy release rate Gr(a). Furthermore the change of the
total potential 1is equal to the work which has to be done by the
stresses Oyy ( , ,a) at the crack face displacements u (, ,at8a)
(dashed 1line in Fig.l) in order to close the crack to its original
length a again (t thickness of the plane structure). In Eq. (2) W(a)
is denoting the work done by the applied external mechanical loads
(for example tensional forces or torsional moments (Fig.4)) and U(a)
denotes the correlated elastic strain energy of the structure.

According to Buchholz and Meiners (12) Eq.(l) can be transfor—
med into an appropriate FE-representation finally resulting in the
following formula

G (arba/2) = £ gi(F, (()bu ; ,(a+da) + By g (@0uy 5 (a+da))(3)

which is valid in combination with the linear strain element discre-—
tisation and finite crack extensions la, as shown in Fig.2. From Eq.
(3), which will be referred to as crack closure integral method or
local energy method-2C, it can be seen that before obtaining one
value of the energy release rate G(a+ha/2), two FE-calculations have
to be performed with two different crack lengths a and at+da. But
different from Eq.(1l) the method-2C (Eq.(3)) contains no operation
1im 6a»0, indicating that it is also valid for finite crack exten-—
sions Aa>>0. Because crack opening and crack closure are reversible
processes for elastic structures this can be concluded in the
following way. With the notations given in Fig.2 one can find, that
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the. podal. Point fqrces Fy,i(a), Fy’i+1(a) and Fy,i+2(a) at the
positions i,i+]1 and i+2 have kept the crack of length a closed along
the finite increment Aa before crack extension. In consequence of
this, these nodal point forces can reverse an cancel the correspond-
ing relative crack face displacements Au ,i-2(a+Aa) and Auy i-1(a+
da) (Au ,i(a+Aa)=0) of the extended crack with length a+Aa, which
Means that they close the crack by Aa to its original length a
again. It is emphasized that this property is independent of limAa-0
and furthermore is holding numerically exact within the actual FE-
model under consideration. By the notation Gr(a+ba/2) it is pointed
out, that the obtained energy release rate has the meaning of a mean
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results for the energy release rates compared to reference solutions
(12) (even with rather coarse FE—discretisation), it has the disad-
vantage of requiring two FE-calculations for each G(a)-value.

IMPROVED MODIFIED CRACK CLOSURE INTEGRAL METHOD

To avoid the Jjust mentioned disadvantage of the method-2C one can
establish in combination with the linear strain element (LSE) dis-
cretisation of Fig.2 the following formula

1 1im 1
CEB) = F kst 2Aa(Fy,i(a)Auy,i—2(a) * Fy,i+1(a)Auy,i—l(a))’ (a3

referred to as LSE-formula of 2nd order or as improved modified
crack closure integral method-L2 (Buchholz and Meiners (13), Buch-
holz (14)). From Eq.(4) it is to be seen, that the method-L2 is
based on the same correlations between the nodal point forces and
crack face displacements of the crack tip area as method-2C
(Eq.(3)). But in contrast to Eq.(3), only the crack tip data of just
one FE-analysis (for the actual crack length a) is required. This
decisive difference, reducing the numerical effort to be made to one
half, is based on an assumption made by RYBICKI and KANNINEN (9) for
their modified crack closure integral method, given for the fracture
analysis of constant strain element (CSE) discretisations of cracked
Structures. Here, in combination with the numerically more effective
LSE—discretisations, the nodal point forces at and in front of the
crack tip (positions i, i+l, i+2 in Fig.2) are taken correspondingly
as approximations for those unknown forces, required to reverse and
cancel the crack face displacements at the positions i, i-1 and i-2,
that means to close the crack of length a by a finite increment Aa.
Because the just mentioned approximation will only be exact for lim
Aa>0, no finite formulation can be given for Eq.(4). But it has been
shown in (12-15), and the following results will verify this too,
that the method-L2 can successfully be applied with finite crack ex-
tensions Aa. Furthermore, due to the symmetry of Eq.(4) with respect
to the local crack tip position i (Fig.2), the obtained energy re-—
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lease rate is correlated to the actual crack length a, although Aa
is finite.

If Egs.(3) and (4) are applied to plane fracture problems, t
denotes the thickness of the plane specimen or structure and F/t may
be interpreted as nodal point force per unit thickness. In order to
extend the method to the actual case of a non-plane problem some
additional considerations have to be made.

For 1load case 1 (axial tensile forces), when the FE-discretisa-
tion of the cylinder is based on an axissymmetric TRIAX6-element
net, the nodal point forces delivered by the ASKA FE-code are rela-
ted to one radiant in circumferential direction (F/t+F12ﬂ/2ﬂri).

For load case 2 (torsional moments), when the FE-discretisation
of the cylinder is based on an axissymmetric TICH6-element net, the
nodal point forces are related to the circumference (F/t+Fi/2ﬂri).

FINITE ELEMENT CALCULATIONS

The method proposed above is applied to a penny-shaped crack located
concentrically in a circular cylinder as shown in Fig.3. As mention-
ed before the cylinder is loaded either by axial tensile forces or
by torsional moments, respectively, creating Mode I or out of plane
Mode III conditions at the circular crack front.

For the numerical calculations the radius of the cylinder was
chosen to 100 mm, while the length of the cylinder was 800 mm. This
should be a sufficient length to approximate an infinitely long cy-—
linder for which correlating stress intensity factors are available
in the literature.The axissymmetric finite element net used is shown
in Fig.4. For symmetry reasons, only the half cylinder has to be
modelled. The net-consists of 196 triangular six-node elements. In
the case of the axial tensile loading these are standard axissymmet-—
ric elements (TRIAX6 in ASKA), while in the case of the torsional
loading special "harmonic" elements (TICH6) are used as described by
Buck (16). In both cases the net has 445 nodal points. Considering
iinear elastic material behavior Young's modulus and Poission's
ratio were chosen to E=200,000. Nmm—2 and v=0.3, respectively.

For the numerical calculations in the case of the axial tensile
loading (loading case 1) a constant axial tensile stress og = 100
Nmm—2 was applied as shown in Fig.4. In the case of the torsional
loading (loading case 2) a torsional moment M¢=2.4987 104 Nm is ge-
nerated by applying the appropriate nodal point forces in the cir-—
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cumferential direction at the crack free end of the cylinder
(Fig.4). Different crack radii a were considered by an appropriate
choice of the boundary conditions. In both loading cases crack
radius to cylinder radius ratios a/b between 0.1 and 0.9 were stud-
ied, with incremtens of 0.1. For loading case 2 additional finite
element calculations were carried out for a/b=0.05 and a/b=0.85 in
order to obtain further energy release rate values at a/b=0.075 and
a/b=0.875 respectively, using method-2C, according to Eq. (3).

ENERGY RELEASE RATES AND STRESS INTENSITY FACTORS

The finite element calculations deliver the crack opening displace-
ments and the nodal point forces in axial and in circumferential di-
rections, respectively, which are necessary to calculate the energy
release rate Gy for loading case 1 and Gyyy for loading case 2 by
the aid of the presented methods 2C and L2 according to Egs.(3) and
(4), respectively. Using the well known relations

GI E (5)
S
(considering plane strain conditions) and
G E
K o |11l (6)
III 1+v

holding for linear elastic material behavior, the corresponding
stress intensity factors Ky and Kyyy can be evaluated from the
energy release rates.

A summary of the results is given in Tables 1 and 2, including
the additional values for loading case 2 at a/b=0.075 and a/b=0.875,
calculated by means of Eq.(3).

TABLE 1 - Results of the Calculations for Loading Case 1

a/b Gy/Nmm . K /Nmm 3/2 By /2
Calculated Reference (17)
0.1 0.590 362.5 358.5 +1.1
0.2 1195 512.4 507.6 +0.9
0.3 1.818 632.0 629.0 +0.5
0.4 2.518 743.9 740.4 +0.5
0.5 3.778 861.6 862.4 -0.1
0.6 4.570 1002.2 1001.2 +0.1
0.7 6.479 1193.3 1195.4 -0.2
0.8 10.262 1501.8 1500.3 +0.1
0.9 21.510 2164.3 2228.2 -2.9
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Furthermore, in Tables 1 and 2 stress intensity factors are pre-
sented, which are available in literature (Tada et al (17)). As men-—
tioned before, these are given for an infinitely long cylinder.
According to (17) KI for loading case 1 may be calculated using the
equation :

o, b2
Onet = (bz—az) 7
with
K; =0+ fra’ Fl(a/b) (8)
and
F,(a/b) = Z—i%fiﬁ—{1+% 2_3(2)740.421(2) ) (9)

The accuracy of this solution (for an infinitely long cylinder) is
reported to be better than 1 percent.

TABLE 2 - Results of the Calculations for Loading Case 2
(*: Evaluated by Method-2C, Eq.(3))

-2/3

-3
a/b GIII/Nmm KIII/Nmm AKIIIrel/%
Calculated Ref. (17)

0.075"  4.004 1077 2.48 2.26 +0.8
0.1 7.970 102, ~3.50 3.76 6.9
0.2 7.097 10, 10.45 10.66 2.0
0.3 2.453 10_, 19.43 19.62 -1.0
0.4 5.893 10_, 30.11 30.36 -0.8
0.5 1.170 105 42.43 42.53 8.3
0.6 2.090 10_; 56.70 57.31 1.1
0.7 3.556 10_5 73.97 74.04 -0.1
0.8 , 6.186 10 97.56 97.70 0.1
0.875  1.051 10 127.16 126.54 0.5
0.9 1.298 10 141.31 140.00 0.9

In the case of torsional loading K may be calculated according to
(17) by IIT

KIII =Ty \ra Fl(a/b) (10)
where Ty is given by
2 M a
Ty = TrproE (1)
N~ m(b'-a’)
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and F1 (a/b) can be approximated by

4 V1-a/b} 1 a3 5

Fa/b) = 4aimalb (1] 2,308 220 (2) ?-155(5) +0.038(5) ) (12)

According to (17) the accuracy of this solution is also reported to
be better than 1 percent.

Finally, in Tables 1 and 2 the relative differences AKIrel and

BK[ 1 e 8re presented, defined by

K - K
_ _Ical T1lit
et = Koo A1)
I1lit

and

Krtiesi = Frrmise

K = (14)
IIIrel KIIIlit

A

A graphical presentation of the results is given in Figs. 5 to 8,
where energy release rates and stress intensity factors are shown as
functions of the a/b-ratio.

DISCUSSION OF THE RESULTS

As can be seen from Table 1, the results gained by the improved
modified crack closure integral method (method-L2, Eq.(4)) for loa-
ding case 1 are in very good agreement with the values from litera-
ture. For a/b-ratios in the region 0.2<a/b<£0.8 the relative de-
viations AK{re; are less than 1 percent. Only for a/b=0.1 and
a/b=0.9 AKyre] values of more than 1 percent are obtained, namely
1.1 and 2.9 percent, respectively. This is certainly due to the
fact, that for finite crack extensions Aa the evaluation of energy
release rates by means of Eq.(4) only is an approximation, which
probably is not so accurate in the case of a small crack radius
(where Aa is half the actual crack radius a) and in the case of a
small uncracked ligament. As will be described later, a better
approximation is gained in these cases by the use of the more labo-
rious crack closure integral method (method-2C, Eq.(3)). Taking into
account that the finite element results, calculated for the cylinder
of finite length, are compared to solutions for infinitely long
cylinders, the statement at the beginning of the chapter certainly
is valid for all a/b-ratios considered. A similar result can be
obtained from Table 2 (loading case 2) where AK[1Tre] is smaller
than 2 percent for all ratios a/b, apart from a/b=0.1, for which
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MKTTIrel Tises to 6.9 percent if calculated from Eq.(4). But by
using Eq.(3), especially for very small and large crack radii,
the accuracy of the results may remarkably be improved for these
cases too, as the AKITTre1 value of 0.8 percent for a/b=0.075 indi-
cates. But it has already been mentioned that the application of
Eq.(3) requires two finite element calculations with different crack
lengths a and a+ba per G(a)-value, instead of only one in the case
of Eq.(4).

To summarize it my be stated, that the extension of the improved
modified crack closure integral method to axissymmetric problems
delivers an effective numerical procedure for the evaluation of 1li-
near elastic fracture mechanical parameters in this field of appli-
cation too.
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