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ELASTIC-PLASTIC J-ANALYSIS FOR AN INNER SURFACE FLAW IN
A PRESSURE VESSEL

W. Brocks*, H.-D. Noack¥*

Elastic-plastic finite element analyses of

a pressurized cylinder with a deep inner
surface flaw have been accomplished to study
the effect of different loading conditions,
i.e. axial forces and crack face loading.
The local energy release rate was caculated
by the method of virtual crack extension in-
cluding a correction term if pressure acts
on the crack faces. The numerical results
are compared with different analytical as-
sessments of J. Especially, a small scale
yielding generalization of the Newman-Raju
approximation is given, and a fully plastic
solution for the maximum J is obtained by
curve fitting of the FE results.

INTRODUCTION

The risk of failure of pressure vessels due to the pre-
sence of flaws is most commonly assessed by means of
linear elastic fracture mechanics, e.g. in the ASME-
Code (1). Since the first solution of Irwin (2) there
have been numerous publications on the calculation of
stress intensity factors for semi-elliptical surface
flaws, for instance by Atluri and Kathiresan (3), (4),
Kobayashi et al. (5), Mc Gowan and Raymund (6), Heliot
et al. (7), Nishioka and Atluri (8). Newman and Raju
(9), (10) established estimation formulas by fitting
numerical results of their own and of various other
authors, which work for different flaw shapes and ves-
sel geometries.

Thus, the K-analysis of surface flaws is well esta-
blished. Nevertheless, pressure vessels are usually
operating at temperatures where the assumptions of 1li-
near elastic fracture mechanics in not met any more be-
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cause major plastic deformations will precede crack pro-
pagation. Hence, the J-integral or energy release rate
has to replace the stress intensity factor K. As still
no estimation formulas are available for an elastic-
plastic J-analysis of surface flaws, expensive three-
dimensional finite element calculations are necessary.
The results of these calculations may then be taken to
establish easier and less expensive methods of assessing
J.

Aurich et al. (11) discussed the validity of a small
scale yielding (ssy) approach

ik 2 2
Jssy B Keff/E' B J(aeff) (1)

introducing Irwin's idea of an "effective" crack length

aeff = a + I'y, (2)

‘where r. is the radius of the plastic zone, and an ef-
fectiveYstress intensity factor which, in the case of
ry <€ a, becomes

Kogg = K\/aeff/a s (3)

As Irwin's model is a plane one its application to a
three-dimensional structure and a curved crack front is
non-trivial. It is one of the objectives of this paper
to find a generalization for the variation of J along
the crack front which bases on the Newman-Raju formula.

For large scale yielding, a plastic term has to be
added to equation (1) which is a power function of
(p/p.) where p_is some reference pressure whose signi-
fiance will be discussed later

J = Jssy + Jpl' (4)
A second objective is therefore to find an approxima-
tion formula for J 1 from elastic-plastic finite ele-
ment (FE) calculat¥ons and to study the influence of
different load boundary conditions, such as axial trac-
tion and crack face loading (cfl).

only a stationary crack is considered here. Thus, the

validity of the results endsas soon as stable crack
growth has initiated.
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FINITE ELEMENT MODEL AND J-ANALYSIS

The investigated cylindrical vessel has an inner radius
(ri) of 1400 mm and a wall thickness (t) of 140 mm, sO
that the ratio ro/r.l = 1.10. Its total length is

3000 mm. Two deep ifiner surface flaws are supposed to
be located along opposite axial lines, having a length
(2c) of 480 mm and a depth (a) of 83 mm. Thus, we have
a/t = 0.59 and a/c = 0.35.

Figure 1 shows the FE model of the vessel. Because
of symmetry, only one eighth of the structure must be
considered in the analysis. The mesh consists of 420
isoparametric 3 D elements and 1575 nodes total. Since
the crack configuration was adapted to experimental
fatigue cracks it has no ideal semi-elliptical shape as
shown in Figure 2. Any point of the crack front is de-
scribed by the parametric angle ¢ , which is 0° at the
deepest point and + 90° at the free surface, respec-—
tively. -

The vessel is subjected to internal pressure (p)
which has been increased up to yielding of the ligament.
Three different boundary conditions are considered which
will be referred to as Case A, B, C.

case A (O) is the situation of an "open" tube with no
external axial traction in z-direction; no crack face
loading is considered, either.

Case B (x) represents a closed pressure vessel with
domes causing an axial traction

- 2 2 - 2
pZ = P rl/ (rO ri)l (5)
but no crack face loading is considered.

case C (A) accounts for pressure p acting on the crack
faces as well as for actial traction p,.

The program ADINA was used for the nonlinear FE ana-
lysis taking the elastic-plastic material model with the
von Mises yield condition and isotropic hardening. The
material stress-strain curve represents the German
standard steel 20MnMoNi55 with a Young's modulus (E) of
210 000 MPa, a Poisson's ratio () of 0.3, and a yield
strength (6_) of 440 MPa, see reference (12). The ana-
lysis allows for large strains in the vicinity of the

crack by using the updated Lagranglan formulation.
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The local J-integral, J(¢), was calculated from the
energy release rate due to a local virtual crack exten-
sion,Ja(¢), see references (13) and (14). By this nume-
rical method, the contour integral is transformed into
a volume integral as proposed by Parks (15) and de
Lorenzi (16). In case of crack face loading (cfl), an
additional term of surface loads was included in order
to reestablish path independency. Figure 4 shows for
different pressures how the release rate is altered if
FE domains of differing radius (r) around the crack tip
are shifted. Additionally, the influence of the correc-
tion term for surface loads is plotted. In the follow-
ing, the stationary value which is reached with in-
creasing r will be taken as the local J value.

ELASTIC ANALYSIS

The stress intensity factor K results from the energy
release rate by

K = J E' (6)
where
B _{E for plane stress} (7)
“1E/ (1-9*) for plane strain
Plane strain condition was assumed for all || < 90° and
plane stress for |¢] = 90° at the surface. If we define
the dimensionless magnification function
- K () _
ho @) =G JRE/T (5in’6 + (a/c)? costgl (O

according to Irwin (2) we will obtain Figure 3 where the
FE results are compared with solutions found in referen-
ces (3), (6), (7), and (9). In equation (8), the mem-
brane stress is defined by

Op = P (r;/t), (9)

and Q is the flaw shape parameter or square of the com-
plete ellig}ical integral of second kind

fa‘zj\/T-u-z—Z) cos? ¢ déd. (10)

Whereas Néwman and Raju (9) give an approximation for-
mula which can be evaluated for arbitrary ratios of a/t
and a/c, the remaining references are not quite compa-
rable as they differ by the aspect ratios from the pre-
sent flaw configuration. Apparently, the formula of
Newman and Raju represents Case C, regarding cfl. No
difference is found, of course, between Case A and
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Case B because an axial traction must not influence the
singularity at the crack tip for a linear elastic mate-
rial. In addition, the linearity allows for a superpo-
sition of Ch and p loading to easily obtain the influ-
ence of cf1™on K . In fact, the h_(¢) curve of Case C
will collapse to that of Case A afld case B if we norma-
lize it by p (ri/t + 1) = 1.1 p instead of oh in equa-
tion (8). Thus, the influence of cfl on J is

J

J = (1 + t/r;)? (11)

cfl P “no cfl

ELASTIC PLASTIC ANALYSIS

Given the elastic solution we may obtain a small scale
yielding (ssy) approximation for J by equation (1) to
(3). Irwin gave an estimate for the extension of the
plastic zone in the ligament (2r_) derived from a
simple 2 D model Y

=B (K )2
2r, = (Uy) (12)

where

8 _{(1—-2:7)2 = 0.16 for plane strain:}
- 1

for plane stress (13)

In Figure 5, these ssy solutions are compared with the
maximum value of J at ¢ = 0° as obtained from the
elastic plastic FE analyses. Additionally, the ASME Code
(1) solution is plotted which includes a ssy correction
via the flaw shape parameter, Q(Q[ /C0,), taking

B = 0.212. moy

A 3D generalization of Irwin's model may be ob-
tained by taking the local K(¢p) for the surface flaw to
calculate a local r_(¢) provided that a realistic esti-
mate of B is given.”?The real plastic zone size in a 3D
structure will lie somewhere between the limits of plane
strain and plane stress so that we expect 0.16<B<1.0. We
now assume that the ligament has fully yielded at¢ = 0°
if the plastic collapse pressure (pF) according to
Folias is reached:

2ry = t-a if MO = dy’ ‘ (14)
M being the Folias factor, see reference (17). Intro-
ducing equation (8) we thus obtain
_ 2
pp = =2 B2 - o.s6s. (15)
o
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Figure 6 shows that this assumption for the plastic zone
size agrees satisfactorily with the FE results as long
as p<pp = 36.6 MPa. The Newman and Raju formula was
used to calculate K(¢) in equation (12).

A further assumption has to be made for the local
crack depth a(¢) of the surface flaw which becomes clear
from Figure 2. Finally we obtain

SR [ _ B (R(D)y:
Jssy(d)) =<7 K2 () [1 STEAT (___dY )] (16)

which is plotted in Figure 7 and, again, agrees well
with the elastic plastic FE results though the yielded
zone is by no means "small" at p = 35 MPa.

If the pressure p equals or exceeds the plastic 1li-
mit the ssy approach is not adequate any more and equa-
tion (4) must be used for assessing J. The fully plastic
solution is given by

J1 =9, &7 (17)

pl o

where, usually, the plastic limit load is taken as the
reference pressure p_, see reference (18). We set

Poa = Pp = 36.6 MPa for case A, and expect that, due to
a ﬁigher triaxiality of the stress state induced by
axial tension,

Poc ® Pop > Pop ~ Pr (18)

which is confirmed by the FE calculations where liga-
ment yielding was reached at 35, 40, and 40 MPa in Case
A, B, and C, respectively.

As no further indications to the fully plastic so-
lution could be found, the coefficients of equation
(17) were determined by curve fitting of the FE results.
Only the maximum J at ¢ = 0° is considered here and
J in equation (4) was calculated from Irwin's plane
sE2¥in solution. The resulting data are summarized in
Table 1 and the total J which follows from equation (4)
and (17) is plotted in Figure 8. The coefficients Qjand
m do not depend on axial traction but on crack face
loading and, thus, appear not to be material constants.
The exponent m is about twice the Ramberg-0Osgood harden-
ing exponent n which ranges between 5 and 7 for the con-
sidered material, see reference (12).
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TABLE 1 - Coefficientsof the fully plastic solution of

J at ® = 0° as obtained by curve fitting

CASE po(MPa) JO(N/mm) m
A 36.6 51.9 10
B 39.3 51.9 10
c 41.6 161.4 13

SYMBOLS USED
a depth of surface crack (minor principal axis)
c half-length of surface crack (major principal
axis)
parametric angle of the ellipse

Q shape factor for an elliptical crack

t wall thickness of vessel

r radius, half-diameter

P pressure

E Young's modulus

P4 Poisson's ratio

o stress

K stress intensity factor (Mode I)

J J-integral
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subscripts and abbreviations

i = inner

o = outer (radius) or reference (pressure)
eff = effective

el = elastic

pl = plastic

Yy = yield .

ssy = small scale yielding

cfl = crack face loading
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1400

Figure 1 Finite element model of the pressure vessel
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Figure 2 Geometry of the semi-elliptical surface flaw
and definition of parametric angle d)
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