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THE PROBABILISTIC MODELLING OF FRACTURE TOUGHNESS

Stephen Slatcher*

A theoretical model predicts that, if the mode of fracture is
cleavage, fracture toughness follows a 2-parameter Weibull
distribution with a shape parameter equal to 2 (for J or
CTOD measures of fracture toughness). The other parameter
in the distribution comprises two factors, one being the crack
front length and the other being a material constant. When a
small number of fracture toughness data are to be used to
predict the results of future tests or the effective fracture
toughness of a cracked engineering body, the theoretical
model provides information that increases the accuracy of
the prediction.

INTRODUCTION

A fracture toughness test gives the fracture toughness representative
of a rather small volume of material. This volume of material is
located at the pre-crack tip of one particular test piece. What is actu-
ally required for practical applications is the fracture toughness of
the material around the crack tip of a possible crack in an engineering
structure or component. An important step in a fracture mechanics
assessment is the inference from fracture toughness test results, of
the effective fracture toughness in the engineering body. A conserva-
tive inference may be made deterministically, e.g. by using the
minimum fracture toughness from 3 tests, but the problem is essen-
tially statistical in nature. A statistical approach is outlined below.

From a set of fracture toughness test results one can infer the
underlying probability distribution that happened to produce that set
of observations. Then, knowing this underlying probability distribu-
tion, one can make probabilistic statements concerning the results of
further fracture toughness tests, or concerning the effective fracture
toughness of a cracked structure. It is convenient to approximate the
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underlying distribution by parametric equations, so in practice the
problem is basically one of fitting parametric distributions (e.g. log-
normal or Weibull) to empirical fracture toughness data.

In doing this curve-fitting it is important to realize that the goal
is to make good predictions (i.e. to make a fit close to the true popula-
tion); it is not to provide a good fit to the particular set of data one
may happen to possess. In order to make good predictions one should
use not only the particular set of data, but also a knowledge of how
similar sets of data are distributed and an understanding of the phy-
sical processes involved. One should also be aware of the possible
danger of over-fitting. For equations of similar form, the larger the
number of parameters that are fitted, the better the agreement with
the data set to which the equation is fitted. However, this does not
necessarily imply that the equation with a greater number of fitted
parameters has better predictive capabilities. Small data sets often
display features that are very untypical of the population, and the
fitting of many parameters will in such cases merely reflect the pecu-
liarities of the particular data set. The convenience aspects of keeping
the number of adjustable parameters as low as possible should also be
noted; in some cases it may be desirable to keep the approach simple
and accept a less good approximation.

This paper will consider fracture toughness on the lower-shelf
only, i.e. the micromechanism of fracture will be assumed to be
cleavage with little or no ductile tearing prior to the cleavage event. It
will concern itself with the prediction of the effective fracture tough-
ness of cracked engineering bodies, by the fitting of a simple
physically-based parametric distribution to fracture toughness data,
and the consideration of the statistical crack front length effect.

A SIMPLE MODEL

Curry and Knott [1] first drew attention to the fact that cleavage
fracture from a sharp crack tip is controlled by the interaction
between the stress gradient due to the crack, and the distribution of
microscopic flaw sizes ahead of the crack tip. Thus cleavage fracture
could initiate from a small flaw close to the crack tip where the
stresses are high, or from a larger flaw in a lower stress region further
away from the crack tip. The crack initiation position and load would
therefore depend on the number of flaws per unit volume, the size
distribution of the flaws, and the form of the stress gradient. It was
claimed [2] that this model could adequately predict fracture tough-
ness from microstructural measurements. The statistical model was
developed, and f ormulated with greater rigour, by Evans [3]. Wallin
et al [4] stressed the fact that the model, when formulated in a physi-
cally reasonable way, actually predicted that fracture toughness was
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statistically distributed. Wallin [5], agreeing with Pineau [6], came to
the conclusion that fracture toughness, K., should be Weibull distri-
buted with a shape parameter of 4. The minimum number of assump-
tions [7] required to reach this conclusion are stated and briefly dis-
cussed below:

1

One can conceptually divide the body containing the crack into
elements, such that the failure of one element implies failure of
the whole body, and such that the strengths of the elements are
stochastic variables, identically distributed and mutually
independent. This implies that pop-ins must be interpreted as the
critical event at which the fracture toughness is defined. Note,
however, that some latitude is allowed for the definition of ele-
mental failure. Thus, for a steel, a cracked ferrite grain need not
necessarily constitute elemental failure. The conditions that the
elemental strengths should be identically distributed and mutu-
ally independent are not very restrictive. If there are several
microstructures along the crack front it is possible to apply equa-
tion (1) to each microstructural region, and treat the crack front
in each region as a component in a series system. The result is an
equation of the same form as equation (1) with an effective
that depends on the proportion of the crack front in each micros-
tructure.

All the stresses and strains at the first element to fail must
dependent on J (the J-integral) and r (the perpendicular distance
from the crack front), only through the ratio J/r. Thus it is
assumed that the stresses and strains at the point of failure ini-
tiation are fully characterized by the J-integral. This is a com-
mon assumption in simple fracture mechanics analyses, but often
breaks down, leading to so-called geometry (constraint) effects. It
is conventional in the fracture mechanics literature to express the
stresses and strains in the crack tip region as a function of J/r,
but it is not clear to the author to what extent this reflects the
actual physical situation, and to what extent it is mere conven-
tion.

The first element to fail must lie in a zone defined by » and 0
(the angle, at the crack front, made with the plane ahead of the
crack) such that, for any 0,  lies in the range Jg (0) <r <JA (9),
where g (0) and A (6) are functions of 0. That is, for any angle 6,
the lower and upper limits for the region where the fracture may
initiate must be proportional to J. The lower limit may, for
example, be zero, and the upper limit could be defined by a max-
imum flaw size if local flaws initiate failure.

Note that no assumptions about the details of the stress and

strain fields around the crack have been made. Neither have any
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assumptions been made about the detailed mechanics of elemental
failure. These three assumptions lead to the following expression for
the cumulative distribution function (CDF) for fracture toughness

[7)

F(J)=1—exp(—BYJ?) ¢))
where s is given by
o=+m u=h(0)
lIJ= f f uf (u ,O,nl,nz,....nk ,Kl,Kz,....Kl )dud e (2)
=—1 u=g (8)
and
u=J/r 3

B is the length of the crack front; mMy,Ma,--Ni are a set of parameters
describing the flow properties of the material; and Ky,K,...K; are a set
of microstructural parameters that determine the distribution of ele-
mental strength (e.g. x; might be the average number of carbides per
unit volume in a steel, while x, and K3 might be the parameters that
define the distribution of the carbide sizes). The function f () gives
the probability per unit volume of elemental failure. In such an
abstract form, the physical significance of the parameter Y may be
difficult to grasp, but it is in fact a material constant, which may be
calculated [7] if sufficient information about the material and failure
mechanisms is available (or assumed). Thus this model predicts that
J. follows a two-parameter Weibull distribution with a shape
parameter of two, and the other parameter comprising two factors,
namely the crack front length and a material constant. Since J is pro-
portional to the crack-tip opening displacement (CTOD), and to the
square of the stress intensity factor, critical values of CTOD are dis-
tributed as J,, while K. is Weibull distributed with a shape parame-
ter equal to 4. The dimensions of y are dependent on the units of
fracture toughness.

THE PARAMETRIC FORM

In this section the parametric form of equation (1) will be compared
with actual fracture toughness data. Perhaps the most obvious way to
proceed is to use a goodness-of-fit statistic to check for significant
differences between the empirical fracture toughness data and equa-
tion (1) fitted to these data. However, this approach has its limita-
tions. For data sets sizes of say 20 or less, significant deviations from
equation (1) will probably not be detected. But neither will such data
sets show significant deviations from, for example, a log-normal dis-
tribution, so little information is gained. One should also be careful in
using the concept of statististical significance for large data sets,
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because equation (1) will show significant deviations from
sufficiently large data sets even if it is a sufficiently good representa-
tion of reality to make useful predictions.

For these reasons, the following method is used to evaluate how
well equation (1) performs in making predictions. Three fitting tech-
niques are used here:

1 Equation (1) was fitted using the maximum likelihood method to
estimate the single parameter represented by the product B Y.

2 The two-parameter Weibull distribution was fitted estimating
both parameters by the maximum likelihood method.

3 The log-normal distribution was fitted estimating the two param-
eters by the standard method.

These three fitting techniques, applied to a large (89 data) homo-
geneous set of cleavage fracture CTOD data, are illustrated in
Figs. 1-3. The CTOD data were obtained in an ECSC collaborative
project [8]. The material was 50 mm thick BS4360 grade 50D steel
tested at —65°C, and the selection of the homogeneous set is explained
in [7]. By eye, it can be seen that all three parametric distributions
approximate reasonably well to the empirical data. The two-
parameter Weibull distribution is better than the model distribution
(equation (1)) because a greater number of parameters are fitted.

In order to compare the applicability of the three fitting tech-
niques, sub-sets of the large data set were randomly selected, each
fitting technique was applied to each sub-set, and the parametric dis-
tributions fitted to the sub-sets were compared with the empirical
CDFs of the large distributions. Before presenting the results of this
analysis, each of the steps in the above sentence will be expanded in
the following paragraph.

Sub-sets containing 2, 3, 5, 10, 25 and 50 data were randomly
selected from of the large ’parent’ data set. 100 sub-sets of each size
were selected from the parent data set. The so-called sub-sets were
obtained by randomly selecting numbers in the range 0-1; the con-
tinuous form of the empirical CDF for the parent data set was then
entered at the probability given by these random numbers, and the
corresponding quantiles were selected to be members of the sub-set.
The continuous form of the empirical CDF was defined as follows: the
i th largest of N values in the data set is assigned the cumulative pro-
bability value (i —0.5)/N, cumulative probabilities in between these
values are defined by linear interpolation, the cumulative probabili-
ties for values lower than the lowest or higher than the highest in the
data set are O or 1 respectively. The difference between the parametric
distributions and the parent data set is quantified by the
Kolmogorov-Smirnoff statistic, D, high values of D implying large
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differences.

The median values of D for each set of 100 parametric distributions
are plotted in Fig. 4.

The results show that for small data sets, the fitted model distri-
bution is usually closest to the parent data set, whereas for larger
data sets the distributions that involve the fitting of two parameters
are superior. We can conclude that, for many practical applications
where fitting to rather small data sets is involved, equation (1) isa
useful approximation to reality. For small data sets the fitting of two
parameters gives poorer predictive capabilities. In [7], tentative
guidelines are given for how one might decide whether or not to use
the model distribution rather than a two-parameter Weibull or a
log-normal distribution.

THE CRACK FRONT LENGTH EFFECT

An important feature of equation (1) is the crack front length term.
This crack front length term is due to a statistical size effect (simply
speaking, the longer the crack front length, the greater the possibility
of sampling a brittle region). Itis a convenient feature of the Weibull
distribution that statistical size effects enter the form of the distribu-
tion in such a simple way, but it is by no means necessary that a
quantity should be Weibull distributed in order to exhibit a statisti-
cal size effect. If a crack front length may be divided into small
equally loaded (in terms of a fracture mechanics parameter) ele-
ments, if the crack is brittle with respect to these elements (i.e. if one
element fails, total failure occurs), and if the strengths of the ele-
ments are identically distributed and mutually independent stochastic
variables, then the CDF of fracture toughness measured on test pieces
of crack front length p, Fp (J), is related to the fracture toughness
for crack front length ¢, Fy (J), by the relationship

F,()=1-(—F, P/ (4

irrespective of the forms of the CDFs. This is explained in greater
detail in [9].

The predictive capabilities of equation (4) are illustrated by
Fig. 5 [9]. Here distributions A and B are empirical cumulative distri-
butions for test pieces of different breadth (i.e. crack front length),
but otherwise nominally identical, and tested under nominally identi-
cal conditions. The data were again taken from [8], and actually the
data comprising distribution A are the large data set from the previ-
ous section, plus some higher CTOD values for material close to the
edges of the plates. The prediction of the CDF for B was made from
distribution A, applying equation (4). The prediction is very good for
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the lower CTOD values of practical interest, and this encouraging
result strengthens confidence in equation (1) since the form of equa-
tion (4) is essential if equation (1) is to be correct.

The practical consequence of the statistical crack front length
effect is that if the crack in the engineering body possesses a different
crack front length to that used in the fracture mechanics testing, then
this fact should be allowed for in any fracture mechanics calculations
involving brittle fracture. It is proposed that if only few fracture
toughness data are available, the material constant ys should be deter-
mined by the maximum likelihood technique. Considering a set of
fracture toughness data, J, i 1=1,2,...N, and assuming that J, is
distributed as in equation (1), the maximum likelihood estimator for
Y is given by

=N /B ﬁ ¥ i ®)
i=1

Then, having estimated s, equation (1) can be taken to give the distri-
bution of fracture toughness for any particular crack front length. If
one knows how the fracture mechanics parameter varies over the
crack front, it is not too difficult to incorporate this variation into the
calculation [10]. In [9], it is suggested that the variation is included in
the form of an effective crack front length. It is also simple to include
a crack front length effect in deterministic fracture mechanics calcu-
lations if one wishes to use a particular fractile of the toughness dis-
tribution, irrespective of crack length, as input to the calculation [9].

CONCLUSIONS

1 A theoretical model predicts that, if the mode of fracture is
cleavage, fracture toughness follows a 2-parameter Weibull dis-
tribution with a shape parameter equal to 2 (for J or CTOD
measures of fracture toughness) or 4 (for K based measures).
The other parameter in the distribution comprises two factors,
one being the crack front length and the other being a material
constant.

2 Though approximate, the theoretical model provides information
that, when applied in the fitting of a parametric distribution to a
small number of fracture toughness data, gives better fits than

- Weibull or log-normal distributions that require the fitting of
two parameters.

3 The statistical crack front length size effect, which is a feature of
the theoretical model, has been demonstrated experimentally, and
may readily be incorporated in fracture mechanics analyses that
consider brittle fracture.
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Fig. 1 The model distribution (equation 1) fitted to 89 CTOD
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Fig. 2 The two-parameter Weibull distribution fitted to 89 CTOD
data.
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Fig. 5
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A comparison between: the empirical cumulative frequen-
cies of the critical CTOD values for the test pieces of
breadth 50 mm (distribution A); the empirical cumulative
frequencies of the critical CTOD values for a set of test
pieces of breadth 12.5 mm (distribution B); and a predic-
tion of distribution B based on distribution A and equa-
tion 4.
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