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AN ULTRASONIC METHOD FOR THE DETERMINATION
OF THE J CONTOUR-TINTEGRAL

Michael Janssen and Jan Zuidema*

A method is described for determining an applied
stress tensor by means of ultrasonic shear waves.
Results are presented showing the plane stress dis-
tribution in a large part of a loaded aluminium 2024-
T351 compact tension specimen. Based upon this,
numerical J-integration is performed along several
contours. Comparison is made with a J-value estimated
using LEFM.

INTRODUCTION

Mostly the evaluation of the fracture parameter J is based on
energetic principles i.e. determination of load vs. load-displace-
ment. However, multiple specimens are required with different crack
lengths or in the case of some special geometries certain assumpt—
ions must be made regarding plastic material behaviour.

Many of these restrictions do not apply when using the original
definition of J as a contour—integral. Consider an arbitrary shaped
2-dimensional body containing a crack as shown in figure (1). Non-—
linear elastic material behaviour is assumed as an approximation
for plastic behaviour under monotonic loading. Rice (1) defined:

J =171 (Wn, - T.d u.)ds ()
1 111
T
where I' = any contour surrounding crack tip
W = strain energy density
T. = component traction vector on T

1
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9 u.
13 .
Bjui = - with u, = component displacement vector
n, = component of outward directed unit vector nmormal to T
s = arc length T (positive when measured contraclockwise)

The path independent nature of J often permits T to be chosen
outside a possible plastic zone at the crack tip. Material behav-
ijour then is linear elastic along the whole of T, in which case the
strain energy density, traction vector and displacement gradient
can be expressed in terms of components of stress and rotation. In
its turn the rotation can be calculated from stress gradients if a
rotation value is known at one point at least.

This means it is possible to evaluate J if the stress compon-
ents and the gradients of the stress components are known along a
contour in linear elastic material. In the investigation reported
here, this information is obtained by measuring the complete dis-—
tribution of the stress tensor around a crack tip. A technique using
ultrasonic shear waves is applied which is based on acoustoelastic—
ity i.e. the effect of stress on the propagation of acoustic waves.
Shear waves have the potential of determining all three plane stress
components.

ACOUSTOELASTIC STRESS DETERMINATION

Theory

Reference (2) describes more fully the theory concerning stress
tensor determination by means of ultrasonic shear waves. The method
relates to 2-dimensional geometries i.e. plates or sheets which
consist of elastic material exhibiting a slight orthotropy. This is
a form of anisotropy generally found in rolled material and can be
characterized by an orthogonal set of 2-fold symmetry axes, denoted
as plate axes X, X5, Xj. The assumption is made that one of these,
the x,-axis, 1is normal go the plate surface. Measurements are carri-
ed oug with shear waves travelling in this direction. These waves
will show birefringence, i.e. an incident shear wave with an arbitr-
ary polarization (particle displacement direction) will be split up
into two waves polarized in the x, and x —direction. Their veloc-
ities will generally differ sligh%ly.

Applying a load in the x., X -plane results in small changes
in plate thickness and wave velocities and also a rotation of the
polarization can be observed. Figure 2 shows this stress induced
rotation o which in fact is a rotation of the orthotropic symmetry
axes Xl" x2', x3' of stressed material around the X4 plate axis.

The applied stress temnsor O can be expressed in terms of a 4th

order k-tensor and a 2nd order t-tensor:
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Oij = kijkl Tl i,j = 1,2 (2)
The t-tensor contains the acoustic data of unstressed and
stressed material. Denoting the time-of-flight of the shear wave
polarized in x,'-direction by t., the following definition is used:
Atij

T..
1) t

i,i =1,2 (3)

where A = chaﬁge caused by applied stress

t]l = t1 cos“a + t2 sin“a
- . 2 2
too t, sin‘a + t, cos‘a
= =1 = 1
£ t]2 2(t1 tz)s1n 20

(=
]

average time-of-flight

The k-tensor describes the acoustoelastic behaviour of the
material for either planme stress or plane strain situations. Uni-
axial tensile tests were used to determine this temsor for the
aluminium alloy 2024-T351. As expected, an orthotropic behaviour
was found with symmetry axes coinciding with the plate axes.
Applying Voigt notationm, which is possible because of the symmetric—
al o- and t-tensor, the k-components for this case of plane stress
are (GPa):

K, Ky K 51,2 21,8 O
Ky kyy Kog| = 22,5 42,5 O
Koy koo Keg 0 0 15,0

defined on the plate axes with X, normal to the rolling direction.

Experimental procedure

Measurements of time-of-flight and polarization angle are
carried out by means of a pulse-echo method. A highly damped 20 MHz
normal incidence shear wave transducer with a diameter of 6 mm acts
as transmitter and receiver.

Coupling between transducer and specimen. Aviscous fluid is used to
providetheacousticalcouplingwiththespecimen.Becausethe acousto—
olastic effect is so small this couplinglayer is a weak 1ink in the meas-—
urement. Within this layer additional reflections cause distortions
in the waveshape. In practice these are not reproducable because of
variations in the thickness and acoustical properties of the coupl-
ing fluid. This problem was solved by using a thicker layer (approx.
80 um). This delays the reflections, so that at least the first part
of the echo's are free of distortion. A specially designed holder is
used to position the transducer exactly parallel to the specimen
surface and at the required distance.
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Polarization angle measurement. The holder also allows rotation of
the transducer i.e. variation of the polarization angle of the
transmitter/receiver. In general the received signal will contain
both birefringent waves in a certain ratio. Often they will overlap
in time owing to the slight difference in velocity. However, there
are always two transducer polarization angles normal to each other
at which extinction of one of both waves takes place. This angle
can be recognized by a maximum or minimum in the received signal
amplitude during rotation. By coupling the transducer to a
potentiometer the polarization angle can be measured with an accur-
acy of 10,

Time-of-flight measurement. With one of the birefringent waves ex—
tinguished the time-of-flight of the other can be measured.

A counter/timer is used with a clock frequency of 100 MHz. Averaging
over 1000 measurements provides a resolution of 1/3 ns. To avoid
interference from the delayed reflections in the coupling layer,

the first zero crossing in the echo is used for triggering.

J-EVALUATION FOR A COMPACT TENSION SPECIMEN

The stress tensor field around the crack tip

In order to evaluate the J-integral, the stress distribution
in a large part of a compact tension specimen was determined by
means of the technique described above. Figure 3 shows the aluminium
2024-T351 specimen, with the grid of 12 x 12 measuring points, 10 mm
apart, arranged symmetrically around the crack tip.

Acoustic measurements were performed in the unloaded state and
with a tensile load of 8200 N.

A problem encountered during this experiment was the influence
of temperature on the time-of-flight. A temperature coefficient of
0,35 1073 x~! was found. Since fluctuations in temperature during
the lengthy experiment are inevitable, this effect can not be ne-
glected. Therefore the specimen temperature was registered for each
acoustical measurement and all times-of-flight were corrected after-
wards.

Figure 4, 5 and 6 show the results in the form of lines of
constant o,., O 2 and o respectively. For the latter two stress
components use was made of the fact that they are zero on the crack
flanks. The patterns are symmetrical within approx. 10 MPa.

J-integrand in terms of stress

Applying the isotropic form of Hooke's law to the integrand of
J (eq. 1) yields the following expression for the case of plane
stress:
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_1n 2 _ 2y _
I; = gliloyy* -0y 0,1 (0,1 * 0gg)mg} = 0y (090 + Tapy

(4)
where IJ = integrand J
E = Young's modulus
w.. = component rotation tensor = %(B.u.— 3.u.)
1] ] 1 1]

A second application of Hooke's law enables the change of rot-
ation between two neighbouring points to be written in terms of
stress gradients. Again for plane stress:

1
du)2] = E[{(l + \))3‘02‘ = 32011 + \>32022}dx1 +
—{(1+V)3,0,5, " 8‘0224-v81011}dx2] (5)
where v = Poisson's ratio
= 9 017
akoij - 1]
A

Theoretically J only depends on the change in rotation along
the contour I'. A constant component of the rotation w in eq. 4
will not contribute since (02 n, + 0,00 ) integrates to zero along T.
However, experimental errors 1n O and o will cause a dependence

: %2 s

of J on the absolute rotations. Thérefore absolute values are estim—
ated by assuming the rotation is zero on the mid-line of the speci-—
men ahead of the crack tip, as the specimen is symmetrical.

Numerical J-integration

Integration is performed along five contours as shown in fig-
ure 7. Four of these (A, B, C and D) surround the crack tip at in-—
creasing distance. Contour E is closed and should thus give a zero
J-value.

Rotations can be calculated at any point on a contour T by
integrating dw,, along many different paths starting from the mid-
line. However, ‘it is convenient if J-evaluation can be based on a
smaller number of stress measurements compared to the 12x 12 avail-
able. Therefore integration of equation 5 is done along T so the
only data needed are those on and directly beside the contour. The
resulting rotation values, adjusted so as to be zero ahead of the
crack, are shown in figure 8. Symmetry is within 10% and further-
more integrating dmz round the closed contour E yields a value
almost identical to ghe starting value.

The J-integrand values (fig. 9) show discontinuities. These
are caused by the angular shape of the contours but have no conse-~
quences for the integration. Table 1 summarizes the results together
with an estimate of J using linear clastic fracture mechanics, i.e.
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based on the K.-value for this specific geometry and load (ref. 3),
corrected for %he plastic zone size following Irwin (ref. 4). This
should give a valid estimate since the plastic zone is much smaller
than the specimen dimensions in the x;, x,p-plane. Experimental
values agree within 97 of this "theoretical" value. The closed con-
tour J-value is small compared to the other values.

In table 1 the influence on J of a component of rotation that
is constant along the whole contour (dJ/dw) is also indicated. As
is argued above, experimental errors in o)) and 03] determine this
quantity. For the worst case (contour B) it amounts to 0,9 N/mm
per Y%o-

TABLE 1 - Results of J-integration along several contours together
with an estimate from LEFM.

Contour Closed Estimate
A B c D contour E| from LEFM
J (N/mm) 21,2 22,1 24,1 23,5 0,15 22,1
dJ/dw (N/mm) +290 -930 -480 -700 -380 -
CONCLUSION

An acoustoelastic determination of the distributiomof normal stress—
es and shear stress around a crack in sheets of aluminium 2024-T351
appears to be feasable although a straightforward check using finite
element calculations is still to be performed. Results of J-integr-—
ation using discrete stress data agree within 9% of an estimate
from LEFM. Furthermore, it is practicable only to use data on and
directly beside a contour, i.e. a contour with finite width. The
main reason for the spread in J-values and for the dependence on

the absolute rotation values is probably the inaccuracy of the
stress measurements. Improvement hereof is of prime importance.

Application of this technique to other more plastic materials
and different geometries and loading conditions is promising.

420



FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

SYMBOLS USED
E = Young's modulus (MPa)
I. = integrand J (MPa)

J = fracture parameter (N/mm)

s or k = component acoustoelastic tensor (GPa
ijkl J ) P cou ( )
n, = component outward directed unit vector normal to T
=)

s = arc-length T (mm)
T. = component traction vector on I' (MPa)

t = average time-of-flight (s)

te = time—of-flight shear wave polarized in xi'—direction
(s)

15 = alternatively defined time-of-flight (s)

u. = component displacement vector (mm)

W = strain energy density MI/m3)
x. = orthogonal plate axes
x.' = orthotropic symmetry axes
o = stress induced rotation of polarization (°)
I' = J-contour
A = change caused by stress
3. = partial derivative with respect to x.

v = Poisson's ratio (-)

Oij = component stress tensor (MPa)
Tij = component tensor containing acoustic data (-)
wij = component rotation tensor (=)
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Figure 3. Geometry CT-specimen including grid of measuring points.
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Figure 4. Measured distribution Figure 5. Measured distribution
01 ]-component (MPa). 0pp—component (MPa).

Figure 6. Measured distribution  Figure 7. Contours considered for
09-component (MPa). J-evaluation.
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Figure 8. Calculated rotation wp; as a function of arc-length s.
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Figure 9. Calculated J-integrand Iy as a function of arc-length s.
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