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INFLUENCE OF CRACK TIP SHIELDING ON SILICON TOUGHNESS
THEORETICAL AND EXPERIMENTAL STUDY

G. Michot*

A theoretical model for plastic relaxation at a crack
tip, including a dislocation free-zone is proposed.
The characteristics of the plastic zone deduced from
this model are of the correct order of magnitude
compared to those obtained on relaxed crack in
Silicon.

INTRODUCTION

The first part of this paper is concerned with a theoretical study
of dislocation distribution ahead of a crack tip with special at-
tention paid to the influence of the plastic zone on the material
toughness. The problem has been solved using the K concept in order
to avoid accounting for the specific geometry of the crack and the
loading. The results are then compared to previous models (1,2) in
which the crack is represented by a continuous distribution of
dislocations. The second part of the paper deals with the applica-
tion of our model to the case of Silicon for which an important
amount of experimental results is available, from X-Ray Topography

observations (3 to 6), etch pits counts (6), and mechanical tests
(7 to 9).

EQUILTBRIUM CONFIGURATION OF DISLOCATIONS

The stress intensity factor for a semi-infinite crack loaded under
antiplane conditions (mode III) is given by K. We have assumed that
the crack plane lies parallel to a slip plane of the solid and the
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crack tip is parallel to a glide direction in this plane. The infi-
nite material is characterized by a shear modulus u and a friction
stress ty. For sufficiently high values of K (2,5) a set of

Basic Equations

This last condition is expressed by the equilibrium equation :

A2
K__ b, u \/Yp(Y)dY_ L 1
V2rX  4mX # o fA X X-Y Ty ................... (1)
1

The first temm corresponds to the external stress acting on a dis-
location located at the distance X from the crack tip (Fig.1), the
second to the image force (10,11), the third to the interaction
with the other dislocations of the plastic zone. It must be pointed

Equation (1) is an integral equation (12). After multiplying by vX,
a previously solved equation is obtained (13), whose solution is
given by :

A
1 [ ea)) 2 90 &
O(Y) = = ﬁ _\\_~— .-..(3)
Y A1 (X-Y) /(AZ—X)(X-A1)

with o) = 20,x (K _ wb _ )
H W2nX  4mx Y

The solution (equation (3)) exists when the following condition is

fulfilled :
AZ
J 20X dX

T =0 ... (4)
Al VA0 (A

1
Shielding Effect

Since a crack exerts a force on a dislocation (image force),
the laws of mechanics imply that the dislocation must exert an
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equal and opposite force on the crack. This effect, the so-called
shielding effect (10), leads to a decrease AK of the stress inten-
sity factor from K to an effective value Ke :

A
Ko = k- | O g (5)
am /Y
1 2
while the crack extension force %~_ decrease to FE,
u 2u

Solutions

With the introduction of dimensionless parameters, a = A/A,,
k = TK/Ky and pZ = 1-A1/A2, equation (4) leads to the following

relation after some integral calculations (14)
k = E(p) ‘/a_Z + K(p)//a_2 ................................. (6)

The complete elliptical integrals of first and second kind, K(p)
and E(p), can be calculated accurately by polynomial approximations
(15). The combination of equations (3) and (5) leads to -

ke = K(p) /;?1 + E(p)/ﬁa‘1 ................................ (7)

The number of dislocations can be derived either by inserting rela-
tion (3) in equation (2) or by general considerations. The second
method (16) postulates that the decrease in the crack extension

5-~-5=-=N1 b or k

It is noteworthy that the knowledge of the distribution function
is no longer necessary.

The effective stress intensity factor ke has been plotted as a
function of k for several values of the free parameters a7, ajy
(Fig.2) and N (Fig.3). The possible solutions in the (ke, k) plane
are limited by two curves. The upper curve (ke = k) corresponds to
the brittle case (no plastic relaxation), the lower curve to the
minimun possible value of Keyi.e to maximum shielding. Points under
this last curve represent distributions of dislocation with positi-
ve and negative signs. Because only positive sign dislocations
obey equation (1) these solutions have no physical sense. A mini-
mum value, Kq = V2ubty of K, is necessary to overcome the image
stress on the first dislocation. It can be verified from equation
(1) that an unstable equilibrium position Ag = ub/4m Ty corresponds
to this value.
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Comparison with previous models

The original BCS Model (1) of a totally relaxed (Ke = 0, A1=0)
embedded crack (Iength 2C, uniform loading o) has been generalized
by Chang and Ohr (2) who introduced a dislocation-free zone (DFZ)
(Fig.4). The fact that A1>0 prevents the crack from relaxing com-
pletely. The corresponding results can be related to our results
only for the limit case when there is no interaction between the
two plastic zones of the embedded crack, i.e. when A2 is much smal-
ler than C. In these conditions the K value for a semi-infinite

For Az much smaller ‘than C, equations (25) and (32) of Chang
and Ohr's paper tend to the first term of equation (6) and to the
first term of équation (7), respectively. The missing terms arise
from the image term of equation (1) i.e. ub/4mX. To explain these
discrepanciesum:shall.follow Li's arguments (11) : ap image dislo-
cation distribution DI(Y) inside the fictitious crack is associated
with the qth dislocation of the N dislocations of the plastic zone
(Fig.4). To account for the crack loading a distribution 0®X(Y) is
added inside the crack. The qth dislocation is sybmitted to the
interaction with the (N-1) image distributions p%(Y) with r=q, to
its own image distribution P& (Y), (giving rise to a stress —ub/4ﬂYq)
to the (N-1) dislocations of 'the plastic zone, to the external
stress and finally to the friction stress. In BCS formulation these
last two terms, summarized under the label Q(Y) arerelated to the
interaction terms by the following equation :

_ M p(Y)dy
Q(Yq) = ﬁfD ﬁ ..................................... (9)

which means that the stress in Yq is equal to zero. The action of
the dislocation located in Yq is not taken into account (for this
reason the principal value og the integral is assumed) and the cor-
responding image distribution p&(Y) is also removed. Thus Chang and
Ohr's model (or BCS model), corresponding to a configuration of
(N-1) dislocations near a crack, including the pt(Y) image terms
(r#q). However it fails to represent an N dislocations pile-up be-
Cause the interaction between the dislocation in Yq and its image

N.B. : When multiplied by V27X, the limit value of equation (1) for
vanishing X, gives :

. ub
K - )1;18 <m>—lAKJ SO0 (10)

Obviously this condition is achieved when the second term is omit-
ted, leading to the BCS condition, i.e. total relaxation with a
vanishing DFZ.
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APPLICATION TO SILICON

For three unknowns ke, a1 and a; only two equations ((6) and (7))
are available. The third relation, needed for a complete solution
of the problem, has been obtained experimentally.

Experimental procedure

A totally brittle {111} cleavage is introduced at 20°C in a
dislocation free floated-zone Silicon single crystal (3,5,7). This
pre-cleaved sample is then loaded under constant P at a temperature
high enough for silicon to be ductile (T>650°C). This load is rela-

tions, K1 = P x f. The loading time has been chosen long enough for
the plastic zone ahead of the crack tip to saturate. This last point
has been checked by in-situ X-ray topography (4) asserting an equi-
libriun configuration of the dislocations of the plastic zone. Then
the dislocation pattern has been frozen in by cooling down to 20°C
where dislocation mobility is negligible.

Ke determination

For our specimen geometry it has been shown that blunting is
negligible relative to shielding (8,9) in Silicon. Thus the high
temperature equilibrium stress intensity factor is given by equa-
tion (5). After freezing-in of the dislocations the stress inten-
sity factor at room temperature KRT is related to the applied load
PRT by the relation :

RT R

K r =

Txt-1a Kl e (1)
RT RT

Fracture occurs under a load P:" for KT" = K1c, because the crack

is assumed to remain sharp after pre-straining. The Kle values are

deduced from :

_ oRT
KIC = PC x f + KIe - K

Discussion

In our experiments under mode I crack opening, dislocation
loops develop around the intersection of the crack tip with essen-
tially two glide plane families, giving rise to four extending
lobes (3,4,7),i.e. to a three dimensional plastic zone. The first
difficulty in solving such a problem is to introduce the interac-
tions between dislocations of distinct lobes. The second one is to
calculate the shielding effect of dislocation loops of any orien-
tations ; in fact, results are available only for straight dislo-
cations (17).

105



cRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

The stress near a crack corresponds to the sum of a singular
tovm peapartiomnal to K//T and to a non-singular term depending on
the loading and sample geometries. Only the first one is involved
in our model, so the small scale yielding hypothesis is assumed,
limiting the accuracy of the conclusions. In particular, in silicon,
it has been shown that the second term can influence the extension
of the plastic zone (6).

From previous remarks it results that only a rough comparison
is possible between our experimental and theoretical observations.
We have calculated the characteristics of a mode III plastic zone
(A1, A2, N) giving the same shielding as our experiment, and com-
pared with mode I plastic zone characteristics. These last features,
obtained on five samples by etch pits counts and fracture tests,
have been summarized in Table 1.

TABLE 1 - Mode I Experimental Results

SAMPLE KI(MPaVﬁ) KIe(MPani) A,(m) | N (by lobe)
F22 0.55 0.068 1.45 468
F14 0.66 0.186 1.45 796
F17 0.66 0.037 2.15 830
F36 0.77 0.168 2415 2 900
F23 0,77 0.300 2.85 3 050
TABLE 2 - Calculated Values for 1y = 6 MPa
SAMPLE KI(MPaAﬁ) A, (pm) Azﬁmn) N
F22 0,55 1.74 3.29 866
F14 0.66 22.8 4.66 1 165
F17 0.66 0.22 4.74 1 264
F36 0.77 15.8 6.40 1 642
F23 0.77 75.5 6.23 1 455

Different values of Ty are chosen to relate the dimensionless
coordinates k, ke (Fig.2) to the experimental values K and Ke. A
reasonnable fit is obtained for 1y = 6 MPa, a value which is of the
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same order of magnitude as the experimental starting stress for

dislocation movement in silicon (v 3 MPa (18)), the excess being
attributed to the interactions between dislocations of different
glide planes. For a given load,A2,and N variations are closed to
Ty™¢ and T,~1, respectively like in BCS model. Calculated values
of A1 and N are listed in Table 2.

Comparisons between tables 1 and 2 show that the calculated
values of Ay and N have the correct order of magnitude. No DFZ has

CONCLUSIONS

Our model allows an estimate of the characteristics of the plastic
zone at the tip of a mode I crack, only when a complementary expe-
rimental relation is available. The stress intensity factor at
equilibrium Ke, determined by fracture experiments, must be related
to a physical property of the material. Particularly, it must de-
pend on the degree of stress relaxation at the crack tip, thus on
the ability of the crack to create enough dislocations to lower

the Ke value or the DFZ length. For example, the physical parameter
could be the critical stress (or stress intensity factor) (5) for
dislocation generation at Or near the crack tip.

SYMBOLS USED

L /2ubTy (MPavim) , A = ub/4WTy (m)
K = Applied stress intensity factor (reduced value : k)

Ke = Effective stress intensity factor (reduced value D ke)

m/2
Kp) = f d8¢1—pzsin26 = Elliptical integral of first kind

0
fr/2 //—_E___E__
E(p) = J d8/V1-p®sin“6 = Elliptical integral of second kind.
0
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Figure 1 : Sketch of the crack and its associated yielded zone
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Figure 2 : Variations of ke versus k for different a1 and a; values
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Figure 3 : Variations of ke versus k for different N values
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Figure 4 : Distribution of dislocations modelling a relaxed crack
(see ref.(2))
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