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EXTENSION OF THE J INTEGRAL TO 3D FRACTURE MECHANICS
AND APPLICATIONS IN ENGINEERING

A. Frediani, D. Vecchiatini*

The Crack Driving Force along the front of
a 3D crack can be written in the form of a
Generalized J Integral,given by the contri-
butions of a line integral and a surface in-
tegral. In order to evaluate these integrals
by the Finite Element method,a suitable
algorithm has been set up and implemented
in a computer program.In the present paper
the preliminary examples discussed are a
penny-shaped crack,elliptical embedded and
surface cracks and a Compact Tension speci-
men. The results obtained in this paper show that
the evaluation of the Generalized J Integral
by the F.E.method is simple,reliable and
that no mesh refinement is necessary.

INTRODUCTION

The application of Fracture Mechanics to the design of structures
has been remarkably successful in the case of plane strain and
plane stress problems,where a crack is characterized by a single
parameter, that is,crack length;in these situations,Linear Elastic
Fracture Mechanics is currently used and the numerical methods
available provide solutions in terms of the Stress Intensity Factor,
which are considered to be fairly accurate in all the significant
design conditions.

In tridimensional problems,a crack is characterized by a "shape" ;
in ceneral,S.I.F. varies alonc the crack front and the use of
numerical methods to calculate this local value of S.I.F. is expen-
sive and, sometimes,results are questionable.Considerable attention
has been devoted to the computational problems in 3D Linear Elastic
Fracture Mechanics and different methodologies (Direct methods of
Forces and displacements,virtual Crack Extension,Stiffness Derivati-
ves) or different elements (Crack Tip or Isoparametric elements)
are available;problems arise in engineering applications,where the
great mesh refinement around the crack front,which is necessary in
order to cbtain reliable results,gives rise to soO large a number of
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deqrees of freedom that the F.E.models becorme complex and expensive.
Measurement of the Crack Driving Force without concentrating atten-
tion on the crack tip region was first proposed by Rice (1), who
defined the well known J Integral in the presence of plane stress
or strain states and without body forces. Later,certain extensions
of the Rice's J Integral were proposed in order to include,for
example, the effects of temperature,body forces (Sakata et al (2))
and concentrated loads in a plate (Frediani et al (3)),but a very
important improvement in Fracture Mechanics consisted in the
measurement of the Crack Driving Force in 3D problems by means of
integral quantities,according to Rice's position.

Indeed, the measurement of the Crack Driving Force at any point of
a tridimensional crack can be written as the sum of a line integral
and a surface integral. The line integral (or,simply,J.) is defined
along any path which belongs to a plane normal to the Crack front
at the point in question;the expression of the relevant integration
function is the same as Rice's J Integral. The surface integral (J,)
is defined on the surface included in the previous path and disap-
pears in plane stress and plane strain; in this way, a Generalized
J Integral (or GJ,for the sake of brevity in the rest of the paper)
is defined.

Up till now,the only disadvantages in the utilization of GJ as the
main parameter in Fracture Mechanics are the serious problems
arising when this integral has to be evaluated (Bakker (4)).This
paper shows how to carry out this evaluation and indicates certain
consequences of this result for the future.

THE GENERALIZED J INTEGRAL

Let us consider a homogeneous body with a plane crack,limited by a
continuous curve y along which the first derivative is defined
virtually everywhere;for the sake of simplicity,we suppose that
surface forces alone are present,even though other loading
conditions have been considered in the literature by Wang (5) for
example.

Let P(s) be a point on y,where "s" is a curvilinear coordinate and
T(s) and u(s) are,respectively,normal and tangent unit vectors to y
in P(s) (Fig.l);the Crack Driving Force in P,relevant to crack
growth in thé U direction,can be written as

G(P(s))=y-j[w} -0 o as-{ LT o @ (6 ... @
D AT

where: w is the strain energy density, (Vu) is the gradient of the

displacement vector u,S is the stress tensor (Piola Kirchhoff

tensor),T is an integration path and A is the surface included in T

according to fig.l.

The right-hand side term in (1) is the GJ integral;in the case of

plane stress and plane strain states,y is a straigth line and we

An interesting proof of egn.(l) is to be found in Bennati (6)
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get:
_a__[g,'E.Vu E] =0 (2)
9T ¥

and, consequently, the expression of the Crack Driving Force becomes

G(P)=y f (wl-(7g) 's]nds (=) (3)
r
where J is the Rice's J Integral.

COMPUTATION OF THE GJ INTEGRAL BY THE F.E. METHOD

According to eqn. (1) ,the GJ integral can be defined on the basis
of two terms : a line integral along a path I'(J;) and a surface
integral in the domain A (JA) ,so that

GI = J; = Jp- (4)

J. depends on stresses and displacements,while JA depends on the
detivatives of these quantities.

Even though large deformations and constitutive equations of
non—linear materials can be used in the assessment of GJ,the
hypotheses of linear elastic materials and small deformations are
used in the present F.E. computations in order to simplify the
problem and to possibly compare the results obtained with those
existing in the literature.

Displacements and stresses are obtained as a direct result of F.E.
analysis and,therefore,the quantity J. can be immediately computed;
the opposite occurs as far as J is concerned and the problem arises
of evaluating second derivatives of displacements (the terms of Jp)
on the basis of the displacements and the first derivatives of them
(the results of F.E. analysis).

This problem is solved in the isoparametric space and by formulating
a suitable algorithm in order to assess all the terms of JA in the
isoparametric coordinates.

The twenty node isoparametric elements are commonly utilized in
Fracture Mechanics;typical advantages of this are those connected
with the simple interpolation functions used,with the possibility of
simulating stress singularities by the Quarter Point Node Technique,
and with the presence of these elements in general purpose codes,etc,
but,in the present context,the main advantage is the possibility of
expressing the integration functions of Jp and I in the isopara-
metric coordinates.

The correspondence between the coordinates (x,y,z) of a material
point in a body and the isoparametric coordinates (E,n,z) of a
twenty node isoparametric element is expressed by:

20
X §Ni(i,n,c)xi

=
]

20
b Y
E Ny (E,n,0)Y; (5)
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20

z = %} Ni(Em:C)Zi
where N, is a shape function and (Xi’yi'z') are the coordinates of
the i.th node;similar relationships aré valid as far as
displacements are concerned:

20
u = }f Ni(gln,C)ui

<
]

20
§ Ni(E,n,C)Vi (6)

3
I

20
% Ni(Em, C)Wi

where (u.,v,,w,) are displacement components of the ith node.

The Jacdbian matrix of (5) and the inverse of it are,respectively:

ok 3y 22 fpE an 3]
I I 13 9X O0X  0oX
- | 3y 232 -1_ |3& 9n 3¢
RS 9an  on  9n & 9y dy 3y ! %
x dy 2 % n 3g
LaC 9z 9T L9z 9z 9z |

The terms of the matrix J are known functions of_the isoparametric
coordinates;the expressions of the terms of the J matrix in terms
of (£.,n,r) are obtained as shown in App.I and are fundamental in
order to evaluate the J, surface integral.

The finite element mapping in the crack front region is carried
out according to the following procedure:

1) fix a global reference system (xG, ,zG) so that,for example,

the crack belongs to the (xG,yG) plgne (fig.2);

2) estabilish a set of control points,P, on the crack front vy:

3) at any point P consider the aforementioned "local"reference

system (x,y,z) ,where:
—the origin is conventionally fixed in the x. axis,
—the plane (x,y) is normal to the unit vector T,tangent to y
in P,
4) design the finite element mesh so that the (x,y) plane contains
the Gauss Points of the elements included in the path T.

Concerning this local reference system,the expressions of JL and

J. are the following:

)dy-[(oxn +T_n +T__n_)

X XYY XZ'2

A
1
=\{% + +
J ng(cxexmyeymzezﬁxyyxy szYzy T Yzx
Ju

v A
=" Txynxmyny+ryznz )t (T, A tT Zyny+oznZ ) ﬁ] ds} (8)
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2
9T " u 9T 2 30
_ Xz ou , T yz v T 0V zZ oW
JA—j( = " X2 5oz T oz ax ' YPaxez | 9z ax
82w
* 0, Sz (B ©

z
nz=0 identically) and the other symbols have the usual meaning.

nx,ny,n are components of the unit vector n,normal to I' (where

Evaluation of J_. With the exception of 3v/dx and ow/3x,all the
Terms in (8) are directly obtained as outputs of F.E. camputation
in the isoparametric space and the cross derivatives 9v/dx and dw/9x
are obtained by differentiating the shape functions; therefore, the
integration function of Ji, is defined in terms of isoparametric
coordinates and line integration along the path I' can be carried
out by means of the Gauss technique in the isoparametric space.

The intecration paths are defined along the Gauss Points of the
element involved.

Evaluation of Jp. In order to write the integration function of J
in terms of isoparametric coordinates (£,n,c),certain mathematica
operations must be carried out; as an exanple,let us consider the
first term in (9): (d0__/32) (du/dx) .

The derivative au/'axx is an output of F.E.;for linear elastic
materials,we have:a

__O_>iz_ _ G(Bzu + 32w )
9z 322 9X02Z
and,obviously:
%u_ 3 (3(§Niui))a_s_ . BEN;Yy) a2
o z 9z 3 0z & 822
+a_(3(ZNiui)) 3_.+ B(ZNiui) 82n .
0z on 9z an 322
.\ a__(a(ZNiui)) oz .\ S(ZNiui) 822;
9z 14 4 9T 322
_ﬁ N (BZN]._vii_)‘a_g . BZNiwi E)Zg—
3%Xdz  ox = 9& 0z oE %02
2
. 5 (BZNiwi)a_ . BZNiwi a™m A
oxX on 0z oan 9xX02
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5 BZNiwi) o 0 (ZNiwi) 32€

5% ¢ 3T 3z T ot oz

finally,the deri\_@tives 3E/9%,9n/0z and 3r/dz are terms of the
aforementioned J & matrix and given in App. I and all the other
quantities are easily written in terms of (¢,n,7) by differentiating
the shape functions.

Similar considerations are valid for all the terms in JA’

+

Integration procedure. Since the application "g" from a R3 space to
the isoparametric one is bijective and continuously differentiable,
the integration of a function f£(x,y) can be carried into the
isoparametric space,owing to the well known equality (ref.fig.3)

fAf(x,y)dx dy = fA.f g(g,n) (det J) dg dn (10)

where J is defined in (7).

Now,the (x,y) plane is normal to the crack front in P and contains
nine Gauss Points in any element inside I' (fig.4); since the F.E.
results are relevant to a 3D mesh,the nine Gauss Points in question
must be identified among the 27 Gauss Points of the element. The
procedure is the following:

- definition of the isoparametric axes (¢,n,2) on the basis of the
connectivity of the element,by associating the directions
according to the node sequence;

- numbering of the G.Points on the basis of the reference axes

chosen;
- association of a real axis to an isoparametric axis.
The application of the Gaussian Quadrature method of

integration can be applied directly solely to element F in fig.4;
instead of the remaining elements in fig.4,we must consider modified
tridimensional elements,where the external surface.is limited by
the integration path and,therefore,a new position of the Gauss
Points occurs. In practice,a set of new elements is created.

The algorithms for the evaluation of GJ are implemented in a
camputer program in which the input data are the results of F.E.
computations;in this research,the MARC code was used.

EXAMPLES OF APPLICATION

The utilization of GJ instead of S.I.F. as a measurement of Crack
Driving Force allows us to cbtain the following important
advantages:

- it is possible to refer to a wider class of constitutive
equations;the presence of non-elastic material around the crack
front is allowed and stresses can be described by means of the
pPiola - Xirchhoff tensor as well;

- no hypothesis of plane stress or,alternatively, plane strain
is needed,so relieving Fracture Mechanics of an unnecessary
limitation.
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Another important advantage will be seen in this paragraph,after
the analysis of simple but interesting models:
- the computation of GJ by means of the F.E. method is easier than
that of S.I.F.
The following models are considered:
A penny-shaped crack,
Elliptical embedded and surface cracks,
A Compact Tension specimen.

Penny-shaped crack model.

The model is a cylinder,uniformly loaded in tension on the bases,
where a central penny-shaped crack is present. Three different F.E.
models have been considered,using twenty-node isoparametric
elements and axialsymmetric elements;the mesh in fig.5 is relevant
to a 1/8 of the body,with and without collapsed elements around
the crack front.

Fig.6 shows some of the 36 integration paths considered together
with the correspondent results;maximum and minimum values of GJ
obtained are within + 1.1 % of the average value.

The values of JA cannot be disregarded with respect to J or,in
other words,the Plane strain condition is not fully satisIfied;
indeed,this situation camnot occur in an elastic boby.

In the Irwin's paper (7) the plane strain condition is assumed
"a priori" as a consequence of the hypothesis that the crack
contour does not move in its plane under the loading applied:
clearly,this situation does not occur in any elastic body ,where a
crack shrinks monotonically under loading, Usually,the presence of
plane strain state in 3D Fracture Mechanics is assumed in the
presence of not well defined "large amount of material around the
crack ; this assumption seems to be rather arbitrary.

The results obtained show that the presence of collapsed elements
in the crack front region does not play an important role as far
as accuracy 1is concerned.

Elliptical embedded and surface cracks

Thesoverall dimensions and loading conditions of the cracked body
are the same as in the previous example; an elliptical crack,with
a/c = 0.6,is present and the F.E. model of 1/8 of the body (£ig.7)
allows us to simulate the following conditions:

i ) an internal elliptical crack,when symmetry conditions are

prescribed on 3 planes;

ii) a surface elliptical crack,when symmetry is prescribed on two
planes and free surface is imposed on the third plane.

Control points P, are set in the middle of the sectors in fig.7;
fig.8 shows the ifitegration paths together with the values of GJ
obtained and fig.9 shows the GJ values for elliptical internal and
surface cracks.

Tt may be observed that:
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- the values of GJ are invariant,even though J and J, may vary
when passing from one path to another ( fig. 8 shows the results
relevant to typical paths);

- the condition of pure plane strain is not satisfied and,
therefore,no comparison is possible with results obtained in the
plane strain hypothesis;

- no remarkable difference exists whether collapsed elements are
used or not.

Compact Tens ion specimen

Compact Tension specimens are significant in Fracture Mechanics
because they are a standard for assessing the Fracture Toughness
of materials;the expression of S.I.F. in the literature concerns
the plane strain condition and,therefore,the crack front is
supposed to be straight.

Now,the following preliminary remarks are necessary:

i. the plane strain state cannot be present in the lateral faces,
where o,= 0(the z axis is set along the thickness),

ii. experiments show that the crack front grows faster in the
middle of the thickness and,consequently,a certain gradient
of the Crack Driving Force must be present when the crack
front is straight

In the present analysis, a standard specimen is considered and
three F.E. models are used primarily in order to improve the mesh
refinement along the thickness; in fig. 10, 1/2 of the mesh is
shown.

Fig. 10 shows a typical map of integration paths and certain
results concerning model n. 1.

When the condition of symmetry is also prescribed in both the
lateral planes, the effective plane strain condition is simulated.

Fig. 11 shows that,in this condition,the values of Jp beccme 10
orders of magnitude smaller than the previous ones;these results
can be compared with those existing in the literature.

In particular,interesting research on a C.T. specimen was carried
out by J.C.Newmann (8) using a Boundary Collocation method in plane
strain conditions;the S.I.F. value obtained is : K = 1.035.

From the relationship: 7

2 A
170 2 (1)
we obtain K = 1.014 in the roughest mesh being considered.

In the experimental characterization of materials with respect to
Fracture,a given material would seem to show different values of
Fracture Thoughness K- across the thickness of the C.T. specimen
tested.

This situation is totally unsatisfactory; in the light of the
present results,the stimilating conjecture may be made that the
parameter chosen to provide a measurement of the toughness of a
certain material is wrong and it is worthwhile trying to
characterize materials in relation to their critical GJ values.

GJ =
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CONCLUSIONS

The Crack Driving Force at a point of a crack front can be written
as the sum of a line integral,Ji,and a surface intagral,Jp; the
quantity GJ = J;-J, has been called the "Generalized J Integral”,
because Rice's tegral is a specification of GJ in the presence
of plane stress or plane strain states (and,correspondently, J,= 0)
The meaning of GJ is maintained even though non elastic material
is present inside the integration path and stresses may depend on
large deformations.

Both line and surface integrations can be carried out in the
isoparametric space when twenty node isoparametric elements are
used; in order to obtain this result,a suitable algorithm has been
set up and implemented in a computer program.

A number of preliminary examples are discussed, Viz.: a penny-

shaped crack model ,ellyptical embedded and surface cracks and a

Compact Tension specimen.

The results obtained show that:

- a reliable evaluation of GJ is possible without a mesh refinement
around the crack front and without collapsed elements;

- it is possible to give a quantitative evaluation of the presence
of plane strain state on the basis of the value of J, and the
hypothesis of the presence of pure plane strain in acture
Mechanics can be avoided;

- in the conditions where a comparison is possible, the present
results are in agreement with those existing in the literature.
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APPENDIX T

Calculation of the inverse of the Jacobian matrix

3 3n iﬂ
9x 9x oxX
;1 o2& A 3z
Yy ay oy
& an L
L 0z 9z 22z
We have,by definition:
7.3 V=1
or,in an expanded form
3x 3 , 3y 3& , 3z 3E _
9f ox 3f dy 3 3z
3x 3n , 3y 3n , 32 3n _ g
9§ 9x 38 dy 9E 9dz
8x 37 , 2y 3L, 3z 3t _
3f 9x 3¢ oY 3 9z
ox 3f , 3y 3E , 3z 3E _ 4
3n 9x 3n JY an 92z
3x 37 , 3y 3n , 3z 3n _ 4
3n o an 3y an 9z
3x 3% , 3y 3% , 3z 3L _
9n 9x an dy dn 3z
3x 3E , dy 3& , 3z 3E _ 4
9T °ox 3z JY 3¢ 9oz



FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

9X

3x 3n an
9g 90X 3¢ 9y
ax 3¢, 3y 3L
9z 9x 3z ay

This set of equations can

Io)
@
3

z

Y% 8z 0

.2z 3% _
3¢ 9z

be divided into three subsets

of equations;they can be solved singly and the result is

3y 3z _ 3y 22 ax 3z _ 3x 3z
3% _ 3n ag 9z 9n 37 _ 9n 23§ 3€ 9n
3x |3 3y [T
ay 3z _ 3y 3z ax 3y _ 3x 3y
3n _ 3% 3§ 98 3% 35 _ 3n 3¢t 3¢ 9n _ _&_
3x El 3z |J] |7l
3y 3z _ dy 3z 9x 3y _.8_521
3g _ 3& 3n 3n 3E dn _ 3¢ 3 3 9 _ b
ax 3] 3z [3] |3
dx 3z _ 3x 3z 3x 3y _ 3x 3y
3€ _ 9z 3n_ 9n 3% 3z _ 3§ 9n_ 3n 35 _ _C_,
3y | 7] 3z |3 ||
dx 3z _ 3% 92
an _ 98 9% 3¢ d§&
dy [J]
where:
ey _xay,, . Xy _ X A 2
an 3zg 3z 9n 9z 3¢ 38 3¢ 3& 9n an 3¢
3z ,9d
g =32 Xy xdy,, 2z Bxdy A,
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Fig.1 Sketch of the notations Fig.2 Global and local reference
used systems.
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Fig.3 Application from R3 to the Fig.4 Typical integration vath.
isoparametric space
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L
— ELLIPTICAL EMBEDDED CRACK
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Fig.9 GJ values relevant to elliptical embedded crack and semi-—

elliptical surface crack
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Fig.10 Typical integration paths
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6 : 0.559843p- 18 E 0.1299870-03 : 0.1299%7p-03 E 0.101789D¢01
1 E 0.8757540-13 : 0.1288730-03 :. 0. 128873p-03 : 0. 1013280001
(] . 0.8780920-13 : 0.129109p-03 : 0. 1291090-03 : o.ungzumn
9 E 0.87117720-13 : 0.131160D-03 : 0.1311600-03 : 0.102223p¢01
10 s -0.234326D-12 ¢ 0.1270790-03 ¢ 0.127079p-03 ¢ 0.100620b¢01
" :. -0.23%0%20-12 E 0.127616D-03 .: 0.127616b-03 E 0-100833pe0 4
12 $ -0.2340850-12 : 0.130106p-03 ¢ 0.130106p-03 ¢ 0.1018120¢01%

* ¢
O»O.t....bl'..b“.00‘0000‘000‘000.‘00..005‘l‘b..‘ill.‘0“lb“‘000‘l“..‘..l...b.....‘..‘.l

Fig.11 Typical output of the computer program
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