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NEW CRACK-TIP MODELS

G.P. Cherepanov¥

The author's earlier theory of crack propagation in
continua is modified accounting for special proper-
ties of the surface layer. Some new models of non-
linear fracture mechanics are suggested, modeling the
local plastic regions Dy slip lines. These are:

- the "Trident" model for long cracks,
- the "Octopus" model for short eracks,

- the "Martin" model for main cracks in gas pipe
lines.

INTRODUCTION

The parameter governing the crack growth in continua 1is the
Crack Tip Energy Flow Density (CTEFD) defined by an invariant in-
tegral along a small contour C enveloping the crack tip (Cherepa-
nov (1), Williams (2), in a special case Rice (3)). This concept
proved to be useful in practice as a criterion for crack initiati-
on, provided contour C does not pass the non-proportional (plas-
tic) process zone, Landes & Begley (4). The attempt to contract
the contour C to the singular point 0 at the crack tip resulted in
many cases in zero-CTEFD paradoxes which allowed only stepwise
growth of cracks, Cherepanov (5). Moreover, the infinite deforma-
tion in the point O contradicts to trial, since the behaviour of
any mechanical model for very large stresses and/or strains has no
physical meaning. In what follows certain ways to overcome the
paradoxes are briefly discussed. A more detailed treatment will be
given somewhere else.
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A CONTINUUM COVERED BY A "SKIN"

Let us assume that all continuous media are similar to biolo-
gical materials covered by a thin film or skin whose physical pro-
porties are quite different from those at internal points. It is
the skin which is responsible for the origin of surface micro
cracks.

As a first approximation the skin will be modeled by a liquid non-
separable film of zero thickness having a surface tension Y. On a
traction free body surface S the skin stresses are:

g, = -Y/R, e ™ 0 ()

where 9, and Ot are the stresses normal and tangent to S, respec-

tively, and R is the mean radius of curvature at the point under

2
consideration. The value of Y for solids is equal to 100 = 10%
N/cm, i.e. very small. Hence, the additional stresses caused by
the skin can be ignored almost everywhere, except in a region of
size A near the crack tip where the radius R is very small. In
particular, certain cohesion forces arise between opposite borders
of a crack whose magnitude and distribution are found from the
solution of the boundary value problem (1). E.g., in the case of
linear elastic materials, one can derive:

-2 =1
= 2 - 2
A= oy Y2 K s Opay B, KT ¥ (2)
where:

Qg By = dimensionless parameters
KI = stress intensity factor

g - maximum stress at the crack-tip

max

For elastic-plastic materials equation (1) leads to A = &, where §
is the crack opening displacement at the crack tip. Hence, we must
use local finite deformations in this case in order to calculate
cohesion forces.

Let a crack move with speed V in a continuum covered by skin.
The stresses and strains near the crack tip may be considered as
steady state in the moving coordinate system Ox,X, (ef. figure 1)
The calculation of the CTEFD, denoted by r, yields for this case,
using the invariant integral of reference (1):

[}

I = 2Y cos ¢, * o [(u+T)n, - 055 My U 1] dc =

[}

s(w+apVv?)+ Y(2 cos ¢, * b) (i,j = 1,2) (3)
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where:
W = % /U dx,
S
a = %E Sf (u1'1+ u§,1) docs
b = Sf Un,1 d¢
- density of deformation work
T - density of kinetic energy
oi,j - pominal (Piola-Kirchhoff) stresses
ui = displacements
p = density
ni = components of the unit normal to C
¢ - inclination angle of the crack surface to the x,-axis
[} - distance between A and B (integration on S is from A

to B).

If irreversible deformations prior to failure are adequately
modeled, the first term in equation (3) will be large compared to
the others, so that equation (3) yields I' = 8W. The value of W
strongly depends on the loading history prior to failure. E.g.,
the shaded area in figure 2 represents the quantity W, with the
area of the loop being doubled.

If the deformations are approximated by those of an elastic
solid, then equation (3) yields the well-known equation I = 2Y.

LONG CRACKS: THE TRIDENT MODEL

For long cracks the Trident model as depicted in figure 3 is
of most interest. Local plastic deformations are modeled by cer-
tain systems of sliplines emanating from the crack tip:

For 6 = +a 0<rX< dS (slip lines):

0, = T_» [oe] = Oy [ue] =0 for e =0, 0<rc< dp (disclination):

0., =0 ()

r,6 = polar coordinates

A
[}

yield stress in shear

ultimate tensile stress

Q
[
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and square brackets denoting a jump of the quantity in brackets Dby
crossing a discontinuity line.
The parameters ds' dp and a must be defined from the general maxi-

mum principle which requires the absolute maximum of the dissipa-
tion energy growth rate D (Cherepanov (6)):

d

d
. d s . b
D = {21s of [ur] le=a dr + oy of [ue] |e

-0 dr} (5)

where t is the time or a loading parameter.
The Trident model is already well known in two limiting cases:

(i) when slip lines equal zero, i.e. ds - 0, it corresponds to

plane stress through-cracks in plates (Leonov & Panasiuk 7,
pugdale (8));

(ii) when disclination line equals zero, i.e. dp = 0, it conforms

to plane strain cracks (cherepanov (9)).

Next, the basic modes of crack propagation in the framework of the
trident model are discussed.

Steady state crack extension. Let the trident move without defor-
mation. For this case the criterion parameter is the CTEFD, desig-
nated as I',, with the integration path of the invariant integral
enveloping the entire trident from O, to O}. The calculation
yields:

d cos a

. s

T, = 2Y + 21 8 * 0y 8, % 20f [u + T]|e=a dx, (6)
where:

§, = max [ur] on a slip line,

6p = max [ue] on the disclination.

The entire crack tip opening displacement in the Trident model
equals Gp + 26t sin a.

This mode of crack extension corresponds to the concept of quasi-
brittle fracture by Irwin and Orowan, with the Irwin's constant GC

for small scale yielding being equal to the value of FO in

equation (6). Though the mode is unrealistic, it bridged a gap
between the Griffith' theory and metals.
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Unsteady crack extension. Let the slip lines and disclination of
tne trident grow simultaneously with crack extension. For this
case the criterion parameter 1is the unsteady CTEFD, denoted by Ty,

which is equal to (Cherepanov (10)):

1

I, =T, *+DV (1N

This criterion allowed us to construct the theory of subcritical
crack growth by arbitrary loading (in particular: cyclic) well
verified by test data (10), (5).

Step-wise crack extension. According to this most realistic mode a
crack starts very rapidly, with slip lines being absent and with
the disclination developing during the jump. Slip lines grow only
during the crack rest time. The criterion parameter of crack 1Dl iy
tiation and arrest is the CTEFD designated for this case as FJ,

with the integration path of the invariant integral enveloping the
disclination only with the fixed ends at the points 0, and 0} (cf.
figure 3). The calculation results in:

FJ = 2Y + 6p 9

(8)
The critical and subcritical crack growth can be explained in the
framework of the latter mode by introducing a certain characteris-
tic structural distance which separates the neighbouring slip pla-
nes in a crystal. The slow stable crack growth is involved by the
succesive shearing of these slip planes and breaking of bridges.

SHORT CRACKS: THE OCTOPUS MODEL

Let an edge plane-strain crack of length & undergo the stret-
ching load p (cf. figure 4). For very low loads, there grows self-
similarly a plastic trident which is small as compared to &:

d = Ap* LT , d_/d_ = constant (9)
P ) p 8

where p/rs<<1 and A is a certain dimensionless coefficient.
Let us first calculate the value of PJ (with the integration path

enveloping the front disclination) for fixed & as a function of p.
The chart of FJ in dimensionless variables 1is depicted in figure

5. For small scale yielding, when p » 0 and ¥ = O:
¥ 1

- 2 -
- k2 - =
FJ—KIE 1.25 np L E (10)

where E is the Young's modulus.



FRACTURECONTROLOFENGWEENNGSTRUCTURES—ECFG

With increasing p, two other slip lines directed to the free sur-
faces grow from the crack tip along the same slip planes: an octo-
pus arises. The rising branch OA on figure 5 corresponds to the
stable growth of four slip lines of the octopus. Then for a criti-
cal value of p the development becomes unstable, two slip lines
fall to the free surface and a "plastic umbrella" appears, shut-
ting the crack. At this point A, the magnitude FJ drops very ra-

pidly. When increasing p further, the stable growth of the discli-
nation and, especially, of the two front slip lines continues and
the corresponding branch BD in figure 5 rises again.

Let us discuss the crack extension, as the simplest criterion uti-
lizing the crack initiation condition:

r.==r (1)

Where rc is a material constant (1).

According to figure 5 the crack does not extend under any loadings
if &< FC/[EDob) (the phenomenon of non-propagating cracks). Here

and below, EA’ gB, ED' EO’ CB and g, are certain characteristic

constants of the diagram in figure Bie
In the case of 1"0/(5A ob) << rc/(gB ob], both extension and

non-propagation of the crack are possible depending on load level.
For loads in the range ;O < p/ob < CB the crack can grow, because

it does not have a plastic umbrella. The latter is available in
the range of mean loads, when CB < p/ob < ¢,; this is the cause of

crack non-propagation here. In the range of high loads, when
g < p/ob < 1, the crack can extend in spite of the existence of

the plastic umbrella (the phenomenon of arrest and temporary non-
propagation of a crack). When & > rc/(EBob], the crack can grow by

increasing load without forming the plastic umbrella and without
stopping.

The phenomena mentioned are well known from experiments and
explained exclusively by microstructural inhomogeneities in metals
(cf. e.g. the recent paper by De Los Rios et al.(11)). The latter
reason holds for any, including long, cracks.

With the plastic umbrella, the crack extension mechanism in
the Octopus model implies the successive stepwise shearing of pa-
rallel slip lines and the motion of the crack by instant jumps due
to breaking of bridges. The crack length increment per one jump
equals some structural quantity A%. E.g., for short microcracks in
crystals the crack increases its length with AR = na during one
cycle of loading, where a is the interatomic distance, n is a cer-
tain number (n = 1 + 3).
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MAIN CRACKS IN GAS PIPE LINES: THE MARTIN MODEL

Let a crack in a cylindrical pipe of radius R, filled with
gas under high pressure propagate with a constant speed V along a
generatrix designated as the x-axis. The steady state propagation
of the crack is possible only if V 2z c, where ¢ is the sound velo-
city in gas. The active plastic and high moment stress regions
form around the crack, approximately coinciding with one another.
The regions of active and residual plastic deformations are double
and single shaded in figure 6a, respectively. The shell buckles
along the whole plastic region.
The pipe beyond the crack is considered elastic, with exception of
the segments of discontinuous displacement y = 0, 0 < x < dp and

x =0, |y| < dg» along which all active plastic deformations are
concentrated (the Martin model, figure 6b). The front disclination

is under stretching and bending. For y = 0, 0 < x X< dp:

N; M
TnZ ¢2 @ nZ o 1 ny =0 Mxy = Qs [Qy] =0 (12)
s s
where:
= = -h)
Nx’ Ny’ ny forces, Ny 205(}'1l h)
M, M, M = moments of forces, M = ¢ h,(2h-h,)
X y Xy y s
Qx, Qy = tearing forces
y = R, v (p is the angular coordinate)
2h = shell thickness
9 = tensile yield stress

The diagram of the stress oy on the disclination is depicted in

figure 6c, where z is normal to the shell. The shear, bending and
twisting hold on slip lines, for x = 0, 0 < lyl < dg:

Ny L My
pros it
S S
[ -0, [NJ=1[N 1=-0,[M]=10M,3~-0 (13)
with:
N =2t (h,-h), M__ = o_ h;(2h-h,)
Xy s Xy s
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The diagram of the stress Txy on the slip plane is similar to that
of figure 6c.
The fracture controlling criterion is the invariant T-inte-

gral, the integration surface enveloping the disclination. It can
be derived in the following form:

+h
AW
r=1/,1/ [(U+T)nX 05 nj vi,x] dc dz + fJ p(x,y) T dx dy =
C =h S
dp +h Buy
=2/ 5 (o, =) |, dx dz =
& =h y 9x y=0
dp duyO duy1
= 20f {Ny(x) e My(x) = I ax (14)
for: = 0,0<x<d:u =u, x)+zu,h X
y ot Yy yO( y1()
and x =d :u _=u =0
p° yo yl )
where:
p = gas pressure
w = normal displacement of the shell
S = region enveloped by contour C.

Main cracks in gas pipelines were found to propagate by short
successive jumps, crack initiation and arrest being controlled by
the parameter I defined by equation (1w,

CONCLUSION
The covered-by-skin solid model allows us:

(i) to do without singular stresses and strains near the crack-
tip,

(ii) to correctly calculate the continuous crack growth in the
framework of the CTEFD-concept by numerical procedures.

The emitted-slip-lines crack models are of practical impor-
tance for describing various effects of crack initiation, arrest
and growth, in particular, relating to non-propagating short
cracks.
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Figure 1 The crack tip vicinity Figure 2 A 0-€ diagram illus-
in continua covered by a skin strating a loading history of
a particle in front of the
crack tip
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Figure 3 The Trident model for Figure 4 The Octopus model for

long cracks

12

short cracks



G STRUCTURES — ECF 6

FRACTURE CONTROL OF ENGINEERIN

— = p/Oy

Figure 5 Diagram showing the fracture criterion Ty e8 a funetio

of load p

Os
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Figure 6 The Martin model for main cracks in gas pipe lines
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