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SUMMARY

This work was intended to assess whether the thermal expansion
coefficient can be expressed by spatial laws as it occurs with
most properties of rock meterials such as the modulus of defor
mability and the ultimate stress, and besides to correlate sur
faces that define the anisotropies for the three properties
mentioned.

Thus by means of laboratory tests on granite specimens
obtained following nine spatial directions, values were obtain-
ed that made it possible to determine parameters defining
the anisotropies for those three properties.

1. INTRODUCTION

Experience has shown that most properties of rock materials present aniso-
tropic characteristics that can be expressed by spatial laws from the 2nd
to the 8th degree. The anisotropies of deformability, permeability and
compression ultimate stress have made the object of numerous studies, and
significant correlations have been found between the principal directions
of surfaces expressing these anisotropies as well as between values of
their semi-axes. On the other hand, everything points to the existence of
a close correlation between the above parameters, the fabrics of the mate-
rial under study and the axes of symmetry of the crystals forming it;
deviations found can be ascribed to phenomena subsequent to the formation
of the crystals, such as tectoni¢ movements and internal stresses.

The anisotropy of the thermal properties of materials has received
little attention. In order to contribute to improving knowledge on this
subject, LNEC (Laboratério Nacional de Engenharia Civil, Portugal) launch-
ed some studies for this purpose some time ago.

The considerations hereinafter are based on results obtained in labo-
ratory tests carried out on specimens cut from a granite block that was
taken out of the Cabril dam site, and concern the modulus of deformability,
uniaxial compression ultimate stress and coefficient of thermal expansion.

2. ANISOTROPIES OF DEFORMABILITY, FAILURE AND THERMAL EXPANSION

From a granite block extracted from the Cabril dam site, prismatic speci -
mens with the approximate size of 5 x 5 x 14 cm’ were cut following nine
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directions in space (Fig. 1). The modulus of deformability, coefffcient of
thermal expansion and ultimate stress were determined on each specimen.

The modulus of deformability was calculated on basis of'va]ues obtain-
ed in uniaxial compression tests (Fig. 2), in which the maximum test Io?d
was 15.0 MP, and unit strains produced were evaluated by means of strain
gauges with 6 cm measuring base.

For the determination of the coefficient of thermal expansion use was
made of an oven in which the specimens were subject to temperature_varla-
tions, both these variations and length variations being measured (Fig. 3).
The temperature variation which was about 60° C, was evaluated by means of
thermocouples and a potentiometer, and the variation of length was measured
by a suitable apparatus equipped with a 0.001 mm deflectometer.

As experience has clearly showed that the anisotropies of igneoys rocks
with reference to deformability and failure are well defined by spatial laws
represented by 2nd degree expressions, of the ellipsoid type (1), an attempt
was made to verify if the thermal expansion anisotropy of that type of rock
complied with a law of the same type:

Ax2 + By2 + sz

+ 2Dxy + 2Exz + 2Fyz - 1 = 0 (1)

Thus by using the values of each of the three properties in the differ
ent directions (Tables of Figs. 4 to 6), the most probable values of tﬁe coe -
fficients of expressions defining the anisotropies studied were obtained
through the application of the least-square method.

Once the equations of ellipsoids are known relative to the reference
base Oxyz, by means of an adequate rotation these equations were reduced on
the principal axes (2):

2 2

ax“+bviecz?o, (2)

From these equations reduced to the principal axes, the normal equa -
tions (3) were written:

x2 vz g2 - (3)
52T ﬁi— +-§7— N
a

The ellipsoids of anisotropies (Figs. 4 to 6), represented by sections
(ellipses) made in the ellipsoids by the reference planes.and the principal
planes, together with values of the semi-axes, permit to visualize spatially
the surfaces defining the anisotropies under consideration and assess to
what extent and how the ellipsoids depart from a spherical surface taken as
reference.

The absolute and relative deviations (Tables of Figs. 4 to 6) calculat
ed from the values obtained through an experimental approach and through a
theoretical approach and also the coefficients of variation, inform as to
the extent in which the experimental and the theoretical values agree, i.e.,

the degree of validity of the hypothesis formulated to. define the anisotropy.

The coefficients of bulk anisotropy, am, and of maximum anisotropy, ay,
(Figs. 4 to 6) respectively express the mean decrease of a given property
with reference to the isotropic material whose value equals the maximum pre
sented by that property (semi-major axis of the ellipsoid) and the maximum
decrease of the same property. Those coefficients are defined by
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where:

R - radius of the sphere circumscribing the ellipsoid (semi-major-axis)
Re- radius of the sphere whose volume equals the ellipsoid

r - radius of the sphere inscribing the e]Iipsoid(semi-minor-axis).

Deviations between experimental and theoretical values and the coeffi-
cient of variation show that for the rock tested also the anisotropy relati
ve to thermal expansion is spatially well represented by a 2nd degree ex-
pression of the ellipsoid type. Surfaces defining the anisotropies of defor

mability, failure and thermal expansion for the rock tested present slight
eccentricities.

3 QORRELATIONS

Once anisotropies for some given properties of a rock material are quanti
fied, it matters to investigate whether phenomena that generate those aniso
tropies influenced those properties differentially or if the parameters de-
fining the different types of anisotropies studied are to same extent relat
ed to the formation of the material and to structural discontinuities of the
rock mass to which the material tested belong, such as jointing.

To correlate between one another the surfaces defining the anisotropies
referring to the three properties studied, for each set of two  ellipsoids
were determined the angular differences between the homologous principal
axes and the relations of the corresponding semi-axes. These determinations

were obtained through linear transformations, composed of a rotation and an
autometric transformation.

For the three correlations, in Fig. 7 are presented those linear trans
formations consisting of the rotation matrix (R] and the deformation matrix
[0, which respectively indicate the rotation that leads to the coincidence

of the homologous principal axes and the relations of the‘corresponding se-
mi-axes,

Values in Fig. 7 show that no marked parallelism exists between the
principal axes of the three surfaces of anisotropy and, as regards the rela
tion between values of analogous semi-axes, that the ellipsoids of deforma-

bility and of thermal expansion can be considered practically  homotetical
upon coincidence of those axes.

b)

mass jointing. The points and great circles that represent them (Fig. 7)
are shown in sterographic representation. In that figure are represented
the directions of the principal axes of the ellipsoids for the three charac
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teristics studied, and the most probable attitudes and corresponding nor-
mals of the five sets that form the rock mass jointing.

In the same Fig. — in wich the weight of each joint set is | (25 %);
vV (20 2); I (20 %); I, (13 2); vy (12 %) — the principal axes of the
three ellipsoids are found to be practically parallel to the planes of the
joint sets, deviations ranging from 0.5° to 15°. The semi-axes of maximum
and intermediate values tend to be co-planar with the attitudes of the joint
sets of major weight, whereas those of minimum value tend to be co-planar
with the attitudes of joint sets of less importance.

L. CONCLUSIONS

The analysis of results hereinbefore presented leads to the following con-
clusions:

1 - Deviations between values obtained through an experimental approach and
through a theoretical approach as well as coefficients of variation corrobo
rate that for the rock tested, the anisotropy of thermal expansion can spa-
tially be well represented by 2nd degree expressions, ellipsoid type, as it
occurs with anisotropies of deformability and failure.

2 - Surfaces defining anisotropies relative to the three properties studied
do not present large deviations with reference to spherical surfaces, which

indicates that the anisotropies of the properties under study are not much
marked.

3 - Although the homologous principal axes do not present marked co-lineari
ty, the three surfaces of anisotropy to same extent tend to homotety after
making those axes coincide; homotety is practically reached with parameters

that define the surfaces of anisotropy for deformability and thermal expan-
sion.

L - The principal directions of the three surfaces of anisotropy in study
are significantly correlated with the attitudes of the sets that form the
jointing of the rock mass; their semi-major axes are practically co-planar
with the attitudes of the joint sets of more relative importance and the mi
nor ones are practically co-planar with the attitudes of the sets of less
relative importance.

5 - It is of interest to proceed with such studies on igneous rocks that

present larger anisotropies, and also with sedimentary and metamorphic rocks
which are known to present a higher degree of anisotropy.
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