I'HE EGF ROUND ROBIN ON NUMERICAL EPFM

x
f,.11. LARSSON

This paper discusses the results of a round robin on numeri-
cal analysis in elastic-plastic fracture mechanics performed
in the framework of the European Group on Fracture. The cho-
sen problem was a CT-specimen for which experimental results
were available from another EGF round robin. Only the speci-
men geometry and the material tensile curve were given, all
the options of the analysis were free.

A total of 43 solutions in plane strain, plane stress
and 3D were delivered by 22 participants. Comparisons of the
solutions between themselves and with the experimental results
are made and the reasons for the scatter are discussed.

{NTRODUCT ION

After a first numerical round robin on EPFM (see Larsson (1)) performed in
1980 there was a strong interest inside the European Group on Fracture

(EGF) to pursue such activities. It was considered that round robins are a
jood means to get a picture of what kind of accuracy can be expected from
non-linear analysis of cracked bodies that an increasing number of organisa-
tions is applying for safety assessments. This community applies a wide va-
riety of computer codes and numerical methods. The first round robin showed
that correspondingly, there is a large scatter of the results which reflects
in some way the reliability of such analysis. One does not get much comfort
from the statement that a few advanced laboratories possess the good tech-
niques and the necessary know-how if in other places widely diverging re-
sults are likely to be obtained. The transfer of know-how and the thrust
towards the elaboration of recommendations for the correct performance of
PFM numerical analysis are obviously amongst the major fall-outs of
round robins.

The working party on numerical analysis of the EPFM task group of the
I'GF started the second round robin in 1982. The main problem, treated in the
jo-called Phase 2, was performed from June 1982 to the end of 1983 and
regarded a CT-specimen. This time the chosen problem was intended to get not
only code-to-code comparisons but also a confrontation with experimental
results which became available afterwards.

A general presentation of this round robin was given by Larsson (2).
The present paper starts with a short description of the definition of the
round robin, the classification of the numerical solutions and data pro-
cessing. After a comparison of the characteristics of the various types of
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solutions, the bulk of the paper is devoted to a discussion of the most
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M.A.Astiz Madrid Technical University
A.Bakker Delft University of Technology
S.Bhandari Novatome

B.A.Bilby The University of Sheffield
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C.E.Turner
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E.Vitale

Imperial College, London
Royal Institute of Technology
CEA, Cadarache

TNO, Delft

KWU, Erlangen
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RIS@ National Laboratory

CEGB

Technical Research Centre
The University of sheffield
JRC, Ispra

University Karlsruhe

BAM, Berlin

ECN, Petten
Fraunhofer-Institut, IWM Freiburg
The Welding Institute
Twente Technical University
Universita di Pisa
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icipating organizations with the
t 9 European countries and one
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France
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France

The Netherlands
Germany

Germany

Denmark
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U.K.

CEC

Germany

Germany

The Netherlands
Germany
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The Netherlands
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PROBLEM DEFINITION AND DATA PROCESSING

Sgecifications

The specifications reproduced the
specimens tested in the experimen
on the measurement of crack exten
from specimens taken from the vici
form of a table reproduced here as
on millimetric paper represented t
shown in small scale in Fig.2. Poisson

Participants were asked to. report t

geometry (see Fig.1)
tal round robin of the E
sion. Material tensile properties measu
nity.of the CT-specimen
Table 2. Furthermore, a large scale plot
he y-direction uniaxial tensile curve

's ratio was given as 0.3.

of one of the CT-
GF working party
red
were given in the

he load-displacement behaviour, J

and COD up to a load point displacement V = 2 mm, supposing there was no

crack growth. V was defined as the variation of the distance between points

A and A' on the load line on opposite sides of the machined slot and ini-

tially 20 mm apart. The analyst could choose freely the way to introduce

the material tensile properties and perform the analysis in plane strain,

plane stress or 3p, whatever he considered to be the most representative.
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TABLE 2 - Material Tensile Properties

X ¥ VA
0.2-yield stress 552 554 558 MPa
1 579 580 583 MPa
2 615 613 618 MPa
5 667 668 668 MPa
uTs 672 676 670 MPa
Uniform elongation 8 Z.,15 6 %
Total elongation 15.5 15.5 g.5 %

If a participant reported more than one solution, he was requested to de-
clare which one he considered to be his best solution. Of course, all the
options of the numerical analysis (mesh, loading steps, convergence to-

lerances, etc.) were to be chosen freely by each participant.

Data Processing

A glance at Figs.3-12 shows that they have a regular shape. Therefore the
data tables delivered by the participants were reduced to raw data tables
containing typically 10 to 20 points per curve. A curvilinear interpolation
procedure was then applied in which 5-10 intermediate points between the
raw data points were calculated. The resulting curves pass exactly through
the raw data points and appear as having a continuous slope. Care was taken
not to miss the waviness or the humps appearing in some solutions. The

participants were requested to check the raw data tables and the plots pro-
duced from them.

Types of Solution

A total of 43 different solutions were submitted by the participants. They
can be classified as follows:

19 basic plane strain solutions

8 basic plane stress solutions

4 3D solutions

12 complementary solutions using different options from the participant's
basic solution, e.g. a different stress-strain curve.

The latter category is not discussed hereafter. However, some conclusions

that these solutions allow to draw on the influence of various parameters
will be noted en passant.

CODES AND DISCRETIZATION

Finite Element Codes

All participants used finite element codes which are listed in Table 3 to-
gether with some indications on the numerical procedure adopted. Except
ADINA (6 participants), MARC (two participants) and NONSAP (one participant)
the other codes are here termed as own. The incremental theory of plasti-
city and the von Mises yield criterion with the associated flow rule were
applied in all codes. Hardening was treated as isotropic except by parti-
cipant 9 who used the basically kinematic fraction model.

To give an account on the iteration procedure adopted in each code

would require too much space without being complete because many partici-
pants did not document these aspects sufficiently. Iterations within each
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TABLE 3 - Finite Element Codes and Numerical Methods

Parti- Code Numerical method Iteration Number of Vmax
cipant for each loading (im)
step steps

1 ADINA 78 Tangent modulus yes S0 2:1
2 ADINA Tangent modulus yes 10 2 .J9
3 own Initial strain yes 10 2.2
4 own Initial stress yes 11 2L
5 ADINA 77 Tangent modulus yes 10 2

6 MARC J-2 Tangent modulus  yes 19 22
7 own Initial stress yes 150 2.2
8 own Initial stress yes 17 L2
9 own Modified tangmod. yes 26 1.9
10 NONSAP Tangent modulus yves 63 2
11 own 50% initial stress

50% tangmod. yes 29 2

12 own Tangent modulus yes 36 2
13 own Tangent modulus no 85 2
14 ADINA 78 Tangent modulus yes 16 2:3
15 MARC J-2 Tangent modulus yes 9 2
16 own Tangent modulus  ves 114 2
17 ADINA Tangent modulus yes 20 3.7
18 own Initial stress yes 39 1.6
19 own Tangent modulus yes 28 2.4
20 own Initial stress yes 110 2.3
21 ADINA 81 Tangent modulus yes 60 2.1
22 own Tangent modulus no 32 1.9

loading step were performed in most codes until some convergence criterion
was reached. This criterion used some norm of the iterative changes in the
force unbalance vector or in the displacement vector, or was based on
energy balance or on the satisfaction of the plasticity rule. Table 3 shows
the number of loading steps chosen by each participant for his "best solu-
tion" up to the maximum displacement value indicated in the last column.

Discretization

Table 4 is a condensed presentation of the discretizations used in the 2D so-
lutions. It can be seen that 8-node isoparametric quadrilaterals alone or

in combination with 6-node triangles were by far the favoured type of ele-
ment since they were applied by 14 participants. One used 12-node quadri-
laterals, five 4-node quadrilaterals alone or combined with 3-node triangles
and one participant only 3-node triangles. The ratio of the maximum num-
per of degrees of freedom (984, participant 18) and the minimum one (2571,
participant 5) was almost 4. All participants modelled one half of the spe-
cimen due to symmetry. 3D solutions will be discussed separately in a later
section.

Representation of the Uniaxial Stress-Strain Curve

Figure 2 shows that for the given material a bilinear representation can
approxiﬁate the material tensile curve quite closely up to a strain of
about 2.5%. Indeed, three participants had adopted a bilinear law in all or
some of their solutions. Three participants adopted a power law and the
others a multilinear representation. Between 0.4% and 2% strain even the
crudest approximations were within 33 of the experimental curve.
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TABLE 4 - Finite Element Models - 2D Solutions

parti- Ele- Far field elements (a) Crack tip elements
<ipant DOF ments Q12 08 T6 Q4 T3 Singularity Size (mm)
1 464 67 X 1/r (6% |

2 970 184 X X no 2

3 324 176 x x no 1.25
4 380 51 x 1/r 1..3

5 251 34 b 1/r 3.4

6 367 53 X 1/r 0.6

7 637 94 x no 0.5

8 440 32 X 1/r 5

9 360 310 ) X no 0.5
10 474 7 X b4 no 1.32
i 581 81 x 1//r 0.315
12 319 46 X no 1

13 403 166" % 1/x 0.5
14 985 143 X 1/r 1
15 310 44 X 1/r 1.25
16 592 275 X X no 0.2
17 431 59 X 1/r 2.02
18 984 150 b3 X no 0.75
19 309 X X no 0.635
20 551 246 x no 0.5
2 (b)
22 564 84 X no 0.59

{a) 012, 08 and Q4: 12-node, B-node and 4-node isoparametric quadrilaterals,
respectively. T6 and T3: 6-node and 3-node triangles.
(b) Gave only a 3D solution.

It seems therefore that the way in which the uniaxial stress-strain

curve was represented is unimportant as to its effects on the scatter of the
results.

COMPARISON AND DISCUSSION OF THE SOLUTIONS

sest Solutions

figure 3 shows the load versus displacement response and Fig.4 J versus load
5f the participants' best solutions. There are 21 curves, because partici-
pant 2 did not declare which one of his two solutions, plane stress and
plane strain, he considered to be the best one.

The wide scatter of the results is striking. Experimental results are
shown on these and the following figures. They were measured on the CT-
ipecimen taken as the reference for the specifications, de Vries (3). In
the test stable crack growth started at V = 0.9 mm which means that the
comparison of the numerical results with the experiment is possible only up
to that deformation. The last indicated experimental point at V = 1 mm
includes already some stable crack growth. The experimental points on the
J-plots represent values determined according to ASTM E813.

The four best solutions 5, 6, 12 and 21 close to the experimental re-

sults are 3D-solutions. Plane strain solutions are above and plane stress
solutions below the experimental curve, referring to load values.
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Figures 3 and 4 reflect the kind of scatter that can be expected from
EPFM predictions.They are not very useful when one is interested in the
reasons of this scatter. For this purpose it is better to look separately
at the various types of solutions.

Plane Strain Solutions

P versus V, J versus P and COD versus P obtained from the plane strain so-
lutions are shown on Figs.5, 6 and 7, respectively. It is of course inte-
resting to look at the extreme results, particularly curves 3 and 8.

participant 3 had previously applied the same code to EPFM problems
with good success, however, using load control whereas in the present so-
lution he applied imposed displacements. He discovered an error in the
postproceésor calculating the nodal forces at ipposed displacement nodes.
Repeating the analysis with load control he obtained a load-displacement
behaviour close to solution 2. He had never calculated coD before. Appa-
rently the erroneous post-processor does not explain the anomalous beha-
viour of his J for which no convincing reason could be advanced.

Participant 8 applied 12-node quadrilaterals in a code that he declare!

to be still under development. The soft behaviour of his solution could not
be explained up to the moment of writing this paper.

The other 17 plane strain solutions are within a much more reduced
scatter band. Solution 17 shows an irregular behaviour above a load level
of 70 kN, it predicted for V = 2 mm a load of 76 kN which is higher than
for all other solutions except number 3. This seems to indicate some sort
of instability of the integration process connected possibly with too loose
convergence tolerances. The other few solutions on the stiff side, num-
bers 2, 9 and 19 show no systematic correlations between the positions of
the curves and the features of the numerical analysis. Qualitatively, 3-
node elements (no.9) and 4-node elements (no.19) are expected to give
stiffer answers than more complex elements.

Solution 2 introduced a bilinear uniaxial stress-strain curve which
was above the experimental one at ‘all strains, this certainly introduced
a few percent of overstiffness.

when judging the scatter of the results, it should be read vertically
on Fig.5 and horizontally on Figs.6 and 7. In the latter cases, given a
critical value of J or COD, the curves can be used for predicting the
critical load.

Plane Stress Solutions

These are plotted in Figs.8, 9 and 10 for P versus V, J versus P and COD
versus P, respectively. The waviness of the plane stress solution of par-
ticipant 17 starts at a lower load than was the case in his plane strain
solution, already below 1.5 mm displacement or 50 kN load.

As in the plane strain case, the scatter of J and COD prediction is
comparable to that of the predicted load-displacement behaviour. There is
no evident correlation between the grouping of the curves and the features
of the numerical analysis.

3D Analysis

Table 5 shows the discretization adopted by the four participants who de=~
livered a 3D solution. All four modelled one half of the thickness (of one
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TABLE 5 - Finite Element Models - 3D Solutions

parti- DOF
cipant

Ele-
ments

Crack tip elements
Singu- Size
larity (mm)

Type of elements

5 896 64 15 collapsed hexahedra (3 layers) 1/r 3.4
with independent nodes at crack

tip, surrounded by 30 isopara-

metric hexahedra with 20 nodes,

and 19 isoparametric 8-node qua-

drilaterals in plane stress.

6 1129 53 6 collapsed hexahedra (1 layer) 1/r 0.6
with independent nodes at crack
tip, surrounded by 47 regular

20-node bricks (1 layer).

12 842 82 18 collapsed hexahedra (3 layers) no 1
‘surrounded by 36 regular 20-node

bricks (3 layers) and 28 isopara-

metric 8-node quadrilaterals in

plane strain.

21 867 66 24 collapsed bricks (3 layers) 1/x 3
surrounded by 24 regular 20-node

bricks (3 layers) and 17 isopa-

rametric 8-node quadrilaterals

in plane stress + 1 truss

element.

half of the specimen). Participant 6 modelled the whole area by one

layer of 3D elements whereas the others modelled the crack tip region by
three layers of 3D elements and the remainder of the specimen in 2D, plane
strain for No.12, plane stress for 5 and 21.

In spite of the large differences in discretization, the results shown
in Figs.11 and 12 are within a very small scatter band and in agreement
with the experimental results. The reported J values are through the thick-
ness averages. It must be pointed out, however, that when plotting J versus
v the curve of No.12 is about 30% below the other three predictions and the
experimental curve. This participant in fact reported his J as unreliable
due to an error in the numerical procedure.

These results indicate that 3D analysis can be performed in various
ways, the important thing being that the crack tip region is modelled in 3D.
If one is interested in global behaviour, not in the variation of J or COD

across the thickness, it is sufficient to .use one layer of brick elements
on the half thickness.

Large Strain Analysis

A total number of seven different solutions were obtained from a large strain
analysis. Four of these can be seen on Figs.3 and 4: numbers 1, 10 and 16

are plane strain solutions and 17 is a plane stress solution. In this round
robin the strains remain small: at the maximum deformation the region where
the equivalent strain exceeds 5% is small, less than about 10% of the liga-
ment length in plane strain and 5% in plane stress. Therefore, results ob-
tained from large strain analysis do not differ much from those of material
non-linear only analysis.
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The participants had nevertheless an interesting discussion on large
strain analysis. Participant 1 has shown that only the updated Lagrangian
(UL) formulation assures the incompressibility of plastic deformation.
However, this conclusion was reached using ADINA in which indeed only the
UL formulation seems to treat correctly the incompressibility of plastic
deformation. Bathe and Ozdemir (4) have demonstrated that the UL and the
total Lagrangian (TL) formulations can be written in such a way that
identical numerical results are obtained, provided the correct material
constitutive relations are introduced. In the TL formulation the uniaxial
stress-strain curve should be given in terms of 2nd Piola-Kirchhoff stresses
and Green-Lagrange strains whereas the UL formulation necessitates expres-
sing this curve as Cauchy (true) stresses versus true (logarithmic) strain.

Determination of J

Most participants had calculated J from the path integral definition of

Rice (5), generally taking the average of several paths. Five participants
had used the virtual crack extension method alone or in addition to the

path integral calculation. The reported deviations of the minimum and
maximum value of the path integral from the average were always smaller than
6% .

when discussing path dependence one must distinguish between real path
dependence and local variations depending on the discretization. Bakker (6)
has shown that if J is calculated inside a ring of isoparametric 8-node
finite elements, there is a large local variation between the three pos-
sible paths passing through the integration points of the 3x3 integration
scheme. In a typical case

inner path: J = 0.917 x J
mean

central path: J = 1.16 x J
mean

outer path: J = 0.84 x J
mean

where Jpean is the average of the 3 paths. However, Bakker has demonstrated
that Jpean is theoretically and numerically equal to the value of J ob-
tained by the virtual crack extension method. If J is determined by the path
integral calculation, it is therefore recommended to use the averaging
procedure inside different rings of finite elements for studying the path
dependence of J. Other kinds of averaging procedures than that described
above are possible. By passing the integration paths through the Gauss in-
tegration points instead of through the nodes, the following advantages are
obtained:
a) at the integration points the required derivatives are available;
b) one takes advantage of the Gauss integration scheme avoiding the accumu-
lation of integration errors along the integration path.
1f a 2x2 integration scheme is used, the average of the two paths can be
taken inside each finite element ring.

The participants agreed that the determination of J Ly the virtual
crack extension method is considered to offer many practical advantages
over the path integral calculation. Two formulations of the virtual crack
extension method are available, i.e. that by Parks (7) and by de Lorenzi
(8). The latter has the advantage that the results are independent of the
size of the virtual crack extension, as the required partial derivatives
with respect to the crack length are determined analytically. The formula-
tion of ref.(7) determines these partial derivatives by numerical diffe-
rentiation, which makes the results dependent on the size of the virtual
crack extension, which hence should be chosen with care.

432

Determination of COD

The specified linear extrapolation to the crack tip position worked well.
ltiowever, this conclusion was reached for the case of deep edge cracks,
when the crack flanks show an extended linear portion. It is recommended
to perform a linear extrapolation of the straight region of the crack
flanks to the crack tip position by using some numerical procedure. Hand-
made extrapolation is not only unnecessarily elaborate but also leads to

a wavy COD versus V or P curve. The numerical procedure could be simply
the "experimental" method: one node in the region of the crack mouth and
the second node on the crack flank not too close to the crack tip in order
to be sure that it is still on the straight portion of the crack flank.
Also, a linear best fit to several nodes can be performed. In all cases it
is recommended to check the validity of the choice of the points used for
the extrapolation, by plotting the crack profile or by calculating nume-

rically the deviations of various crack flank nodes from the adopted
straight line.

In Fhe vicinity of the crack tip the deformed crack shape depends on
the meshy and the type of singularity, if any. This will be discussed below.

Type of Singularity

Although one half of the participants did not use singular crack tip ele-
ments, such elements appeared however to be the favoured procedure. Some
of those who had not used singular crack tip elements declared that they
would prefer to make use of them in the case they would have larger size
clements. The advantage of singular crack tip elements was considered to
be that even with a coarse mesh the crack flank shape is realistic (cor-
responding to measurement) whereas reqular elements give a too stiff be-
haviour, whatever the mesh refinement. Especially in 3D problems (surface
cracks) it seems important to obtain a more realistic prediction of local
behaviour along the crack front. Further justifications advanced in favour
of singular crack tip elements were: :

- they give small differences between J values from the three integration
paths passing through the integration points of the first ring of (col-
lapsed) finite elements whereas regular elements give large differences;
in small strain analysis the strain energy density shows theoretically
a 1/r singularity which, since stresses are bounded, gives the same
singularity for strains.

However, the following points of view were expressed in favour of
using non-singular elements:
Non-singular collapsed elements increase the number of incompressibility
constraints. For instance, for the usual 8-node element with straight
sides, the ratio DOF/constraints is 1 and if this element is collapsed the
ratio becomes 2/3. The more of these collapsed elements are used to model
the crack tip region, the more constraints are introduced, resulting in a
too high stiffness. Lamain (9) has shown that by modifying the shape func-
tions, however, the ratio DOF/constraints can be made again 1. This non-
singular modified collapsed element might be able to compete favourably
with the singular collapsed element, as it does not have the more or less
disturbing unbounded terms in the stiffness matrix.

Extrapolation to Larger Deformations

There is an interesting possibility to reduce computer time by stopping the
analysis at some point well inside the elastic-plastic regime and extra-
polating from there to the maximum deformation of interest. Such a procedure
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was applied with success by participant 18 whose last data point was at
vV = 1.62 mm and who extrapolated up to V = 2 mm.

The extrapolation is valid as long as the assumption Aa = 0 holds in
the extrapolated region and provided the last data point allows a correct
definition of the regime beyond that point. In the present problem this
condition can easily be checked, e.g. on the J versus v plot which is a
straight line beyond V = 1 mm. In general cases it is more difficult to
check where the analysis can be stopped. A possible procedure consists in
plotting log J versus log (some displacement parameter), Or versus log P
(a loading parameter) . The plot shows a straight line in the elastic regime
followed by a bend and a second straight line corresponding to the elastic-
plastic regime. The last data point must be well beyond the bend allowing
to determine the second slope.

CONCLUSIONS

This round robin was defined in such a way as to represent the conditions
in which the EPFM analyst has to work when solving a practical problem.
‘The results showed a wide scatter between the "best solutions" of the par-
ticipants meaning that EPFM numerical analysis is a delicate task.

Plane strain solutions were too stiff and plane stress solutions too
soft, comparing with the experimental truth. Four 3D-solutions predicted
correctly the experimental behaviour. Before 3D analysis is going to find
a wider use, it is advisable to obtain more reliable answers from 2D ana-
lysis. Although e.g. the softest plane strain solutions were close to the
experimental results, they must be considered as bad, since they are at
the extreme side of the scatter band, the centre of which can be considered
to be close to the “"correct" plane strain result.

The reasons for the scatter could be only partly explained. The EGF
working party on numerical analysis is going to perform a new round robin
in order to develop better rules on how to do EPFM numerical analysis. This
time the mesh and the stress-strain curve will be exactly the same for all
participants. Since the purpose is to make code-to-code comparisons, it is
not necessary to simulate the specimen. Therefore, the mesh will be sim-
plified (holes and steps of the machined slot neglected) and a simple bi-
axial stress-strain law will be adopted.

SYMBOLS

CcOD : crack tip opening displacement

J . path independent integral (5) experimentally determined according to
ASTM E813

P : load, Fig.l

v . load point displacement, in Fig.l the increase of the distance be-
tween A and A'
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Fig. 8 - Plane stress solutions, load versus displacement
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Fig. 11 - 3D solutions,
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