CURVED CRACK UNDER THERMAL LOAD

L. DREILICH, D. GROSS *

The problem of a slightly curved and arbitraryloa-
ded crack is studied on the basis of the complex
method. The formulation leads to a singular inte-
gral equation which is solved approximately by use
of asymptotic expansions. A general formula for

the stress intensity factor is derived and compared
with known results for special cases. For a crack
in a homogeneous stress field the stability of the
crack growth direction is investigated.

The thermoelastic problem is solved for a straight
crack and steady state heat source.

1. INTRODUCTION

The problem of a slightly curved crack of arbitrary shape in

an infinite plane was first studied by Banichuk (1) and
Goldstein and Salganik (2) on the basis of the complex method.
They assumed, that the stress functions can be described in the
sense of the pertubation method by asymptotic expansions.
Cotterell and Rice (3) used the same method to evaluate the
stress intensity factors and to predetermine the path of a
semiinfinite crack. On the same basis higher order solutions
were derived by Karinhaloo et.al. (4).

Unlike the former investigations the present study starts
with the description of a crack by a dislocations distribution.
This approach leads to a singular integral equation for the
density of dislocations which is solved approximately bv means
of asymptotic expansion. The calculated stress intensity
factors are used to discuss the stability of the direction of
the crack path.

So far only a few analytical solutions are known for ther-
mally loaded cracks. One of them is the problem of a straight
crack in an infinite plane with homogeneous heat flow which
was solved by Sih (5). Florence and Goodier (6) gave a solu-
tion for a crack with heated faces. There is no analytical so-
lution for a crack in an arbitrary temperature field or for a
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thermally loaded curved crack. In this paper a solution is
given for a straight crack in an inhomogeneous temperature
field being produced by a stationary heat sourcc.

2. BASIC EQUATIONS

The heat conduction is described by the Fourier equation.
In the stationary case it reduces to the potential equation
AT = O for the temperature T. Using the complex variable

z = x + iy the solution can be written as

T(x,y) = Re{@'(2)} , (1)

where @' is an analytic function. Primes denocte derivatives
with respect to the argument. Considering the crack as an
insulator, the heat flow vanishes across R (Fig.1)

Im(eia(x) ®e"(z)} =0, (2)

where 9 stands for the angle between the crack contour and
the x-axisat the point t = x + 1 A(x).

The plane thermoelastic problem can be described by three
functions o©(z), Y(z) and ©(z). The stresses and displacements
follow from the generalized Kolosov equations:

o, + o, = 2[e'(2) + o' (z)]

g, = Oy - i ery =2z o"(2) + V' (2)], (3)

2uu+iv) = w1 o(z) - z 0 (2) - b(z) + %2 O(2z),
Bar denotes the conjugate to the appropriate term. The mate-

rial constants w:, u2 differ for plane stress and plane
strain

(3=v)/(1=v) 1+ v
ny = { , "2 = 4dua {
3 - 4v 1 plane strain

plane stress

The guantities v, u and a are the Poisson's ratio, shear modu-
lus and the coefficient of thermal expansion respectively.

Consider now a curved crack R defined by the continuous
function A(x), Fig.1. The derivatives of A(x) are assumed to
be continuous too.

07
. Figure 1
t=x+iA
= Curved crack in
R: ’/JLQ{%_HBO(X) infinite plane
X
-a O
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‘.o crack surface is subjected to an arbitrary complex stress
sctor o + it which follows from the solution of the un-
{isturbed problem (plane without crack). Fig.2 showes the
rmal component o and the tangential component t of the
.tross vector at a point t, for example at the upper crack

Pace.

Figure 2

Stress components
g and T

e representation of the crack under this load by the dislo-
cation distribution leads to the singular integral equation
for the dislocation density g (7)

g+ g = 2 { o) g - J H(t,to)[géf)tdt-gﬁt)dt], (4)
R R ' t=to
H(t,to) = 1 - e 129(Xe) £ = o
t = tq
Since the crack is closed at both ends, the side condition
J g(t)ds = O (5)
R
with ds = |dtl|, must be satisfied. The stress functions o'

and @' can be calculated from the dislocation density g as
follows:

0'(2) = 0)(z) - J 28 ax

R ( _ (6)
' - 0 _ g(t) _ g t g(t)
w'(z) = Wy (z) [J s db ¢ J —3%73_ dt

R R

where @; and U are the stress functions of the undisturbed
problem (plane without crack).

For the slightly curved crack <A/a << 1 and

1 n
a"aza a%(r/a
é+% << (A/ ; for n € Nu), the deviation A from the
d(Ar/a)

d(A/a)

straight crack, Fig.1, can be considered as a perturbation.
Therefore the asymptotic expansions with respect to the
perturbation parameter A/a can be conceived. For example

the Taylor expansions of & and A at the point x, bring

the quantity H into the following form:
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-i200 £—-to _ 4 - (1 + 7 {=320g] ——Ea
H(t,t =1-e e nt -y BC20 ]
s to) T -1t n=1 1=t X=Xo i
A=A _ 3 - A"+
= 23 - + ... = - i(x-xo)
= 21(30 x-XQ) 0

From the undisturbed stress field being contigugus{the103§€?;ns
the crack faces can be obtained using the equilibriumcondil

+..

! iAo +iT
)b i EEA EJX(OX ! Q

(o+it) | = (0 -1 xy

- iA' (o -o_-i2T_. )
T Yy X X
i Y XY \=0

l
A=0, S OA=
If we neglect the terms of the order higher than X; in Sgiéto-
obtained expansions, then equations (4), (5) and (6) re :

a
[ g(x)
i i i ' = 2 dx (7)
s -it. - iA'(o -o -i2T )+ lk(ox+ lTXy) | x=x%o
Vg Xy y X Xy -
a
j g(x)dx = 0O (8)
-a
a a
1+iA’ _ 4 iA dx]
@' (z) = (Da(z) - [ J e g(x)dx az { o= g(x)
-2 - (9)
a 14 L}
1-id' ——=v _d x (1+iA') ax +
G'(z) = w;(z) - [ j —XTZ—— g(x)dx Az ] ——-——‘_‘x_z g(X)
-a -a
a
a _ R .
g(x)-g A 1
s! ; (x) =g (x) s ix ax .
t g [ iA e dx+dzz e g (x) |
-5 -a
3. SOLUTION OF THE INTEGRAL EQUATION.STRESS INTENSITY FACTOR
A solution of the integral equation (7) is assumed to be of r
the form
) ® Tn(x/a)
g(x) = & An ' (10)
n=0 /1= (x/a)?
which satisfies the side condition (8) for A, = O. Inserting

this into (7) and making use of the orthoconality conditions
one gets the expansion coefficients

1
o -it. -iA'(o -o_-i2T_ ) + iA(o_+iT )']
_![ Y Xy y X Xy X Xy (1)
V1= Zx?a)fun_1(x/a)d(x/a).

1
An=nz
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T, and U, are the Chebyshev polynomials of the first and
second kind respectively. The functions (9) follow then to be

e'(z) = @y(z) - =

_ 1+i)A'(z/a)

An{lH (z)
von V(z/a)2- 1

: Tn(z/a) -
d {2 ir(z/a) ]}

- —|*H_(z) - ====—— T (z/a) y
dz n Z/ay =1 °

(12)
_ 1-iA'(z/a)

/(z/a)yz -1

_ 1+iA'(z/a)
/(z/a)?2 -1

w'(z) = dylz) - ¥

[ ] -
i {An Hn(z) Tn(z/a)

1

- A é%[“ﬂn(z) z Tn(Z/a)] B

_z 42 _ ii(z/a)
+ (An An)dz[ Hn(z)

T (z/a)] +
/z/a)z=1 ™

a2 [5 ix(z/a) ]}
H (z) - —==—— 2z T_(z/a) .
n dz? n 737377:7 n

H_(z) are the principle parts of the expansions of the paren-
thetical functions at the point z/a -» «. For example l'Hn(z)

is the principle part of 14id’ (z/a) z Tn(z/a).
V(z/a)2 -1

The complex stress intensity factors are given by the sin-
gular parts of the stress functions (12) at the crack tips

k' = K; + iK;I =1+ /ma [2 + iA'(ta)] = nin(:1)“ . (13)
n=

1

The sign (+) denotes here the right and (-) the left crack
tip. The coefficients (11) when combined with the identity

o

n _ 1 a : . _
n§1(x1) Un_1(x/a) = 35 e =% furnish the following expres

sion for the stress intensity factor

>4

a
. iy, ; ; — =i
R— J [(1 tz (ta)><°y+lrxy) * lk'(oy “x 121Txy) *

A (14)

+ ik(o +it \'] B2 dx s
x ©xy) aF x

This solution is appropriate for a general, curved crack
contour.

As an example let us consider a circular arc crack in a
homogeneous stress field, Fig.3.
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ETO Figure 3

Circular arc crack
in homogeneous stress
field.

Go

In this case the expression for the K-factor can be simpli-
fied. With the help of stress intensity factors ky = vna O

and k11 = vna t,for a straight crack of length 2a, the equa-
tion (14) can be splitted into the real and imaginary part:
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Hence for small a and in view of the relation At (x/a) =
= - a x/a + ... one obtains

& t
K 3k K K
El=1tﬁ£[-a, #:1;(14:);1—0_ (16)
I I II 11

This result agreeswith the exact solution given in (8), (3)
up to the first order of a.

4. STABILITY OF CRACK GROWTH DIRECTION
Using the results of Sec.2 the stability of crack growth.di-
rection can be investigated. Hereby we restrict our conside-
ration to one crack tip.

If we assume that the crack growth is determined by the

condition Ky = O, then equation (14) can be interpreted as
an integro - differential equation for the function A(X)
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a a a
- [ 8% g% = 4 A% (a) [o arX ax + j [k'(o -0, ) +
xyyV a-x 2 vy a-x X
-a -a -a
(17)
+ lo‘1 2tX gx
x|V a-x )

In the particular case of the crack in homogeneous stress
field, Fig.H, equation (17) reduces to an inhomogeneous
Volterra integral equation of second kind for the function
v2a A'(2a). Employing the coordinate transformation § = a+ x,
this equation takes the form

2a
k '
-2 AL zE = vz At (a) + 27200 21 J JEALE) g6 | (18)
I I /2a-§
The solution, shown in Fig.4, is
16 2
k —(1-p)
11 n n [ 4
A (x= = - N TN - = - @ S T
(x=a) 2 kI §(7T-p) {1 e [1 crf( rj1 p))]} , (19)
vV TT
where erf denotes the error function.
'
Ax=q) '
e !
o Kn '
Ky ‘
Figure 4

Solution of inte-
gral equation (138).

s -p
=3 =2 =4 0 1 2 3

k
If we consider A; = -2 EEE as an initial angle, then one can
L
see that A'(a) > A! for p > 1 and A'(a) < A, otherwise.
It is seen in Fig.5 that the crack tip angle has the tendency
to decrease with decreasing p (stable). When p increases the
deviation from the straight crack increases too (unstable).
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=== ‘ g Stability of
EEQ___ \ - P crack growth di-

a>JNe rection of right
R

~_ /p<1 crack tip.
N

5. CRACK WITH HEAT SOURCE

5.1 Heat conduction

Consider now a straight crack of leng;h 2a in a plgng wit? iﬁz—
tionary heat source of intensity C, Fig.¢. The pOSltlzn oh
source is given by g =g + in. For the problem at hand, the
crack is assumed to be an insulator.

ly* ‘
s Figure €
g i stationary heat source
and crack in infinity
X plane.
R
j-2a =

: {5 Neumann problem (1),
There are several methods to solve thl; :

(2). It is possible, for instance, to introduce a single ?a{ef
potential. Such an approach leads to a singular Fredho}m ln.e
gral equation of the first kind for the potentlal density u:

a

c |- [ r®) gy, (20)
- Im{C‘Xo} [ *

X=X
-a
Expanding the function u into a seriesof Chebyshev polynomials
of the first kind

o Tn(x/a) (21)
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with the coefficients

B s - 2n$1 Im{(g - JTT = aZ)“} , (22)

na

the solutions can be written as follows

8'(z) =C n E%% + C % 2;n 1m{(§-—/§2- az)n}(z -vzz=anm, (23)

n=1 na

where b, is the radius of a circle around C on which the tem-
perature vanishes in the case of undisturbed temperature
field (without a crack).

4.2 Thermoelastic Problem

The analysis of the continuity of the displacement field (3)
shows that the displacement vector is discontinuous for a
cycle along the curves L. and L, on account of the function
a(z), Fig.7.

ly
L1
Figure 7

Discontinuity of displacement
vector for cycle along Li and Lz.

These discontinuities must be compensated by the appropriate
functions ®; and Y1. It has to be noted here, that ¢; and Y1
shall produce no resultant force and no resultant moment.

We get:

, _ _ w2 C z=C . Im{C-/TZ-a?’}
o1(z) = = T [‘“‘ T —— ]
(24)
! na C 14 z? - 2a’
viter = 35S [ ¢ b e TR K

_____7__
(22—a2)3 2

where b, is the radius of a circle around T on which the
stress vector vanishes in the case of undisturbed problem
(no crack). The functions and ¢, produce a continuous dis-
placement field except along the crack, but they involve stres-
ses (oy + irxy)1‘ 4 0 at the crack face as a consequence.

R

Therefore a second set of functions @2 and Y, must be super-

posed, so that the boundary condition (cy*'-itxy).| *
(o +it ) \ = 0 is satisfied. R
Y TUxy 2ig
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If the stress vector at the boundary is gxpanded in a series
of Chebyshev polynomials of the second kind

i = : , 25)
(cy+ 1TXY)1 . nio Bn(C)Un(x/a) (

then @) and ¢ have the following form

o B_(C)
©, (2) S N nn (z - \/zz-az)rﬁ'1 ,
2vz2-a?2 n=0 a (26)
o B_(7)
by (2) . ¢ (z - vaz=an™ - (z oz} .
2/z7-aZ n=0 a"

The coefficients are given by

1 -/TTTar
Bo(@) = T [5 + i - | BRI -
_.__ 2
- £ a4 e g =) H ,
1 (27)
- 2%z Cf_ &T c-«’-—‘fU—a>“
Bn(g) 1 ¥ [ a ( = +

+ Re{— % (_____L- ‘/Eﬁ?y] 2 2_«1;5 (Q - vE_Z-_a_z—>n+2}}, for n>1.

The appearing series converge for all z € [-a,a]

The general solution for the thermoelastic problem i; ob-
tained by superposition of the two sets of stress functions
@ = @®1 + @2 and Y = Yy + Y. From this the complex stress
intensity factor follows

2 [o: 1 ; a {-/TF-a’ lir_ rFi =72
Kiﬂ-’l%,”‘*ﬂ‘r“‘m”“* 2 | = Z(C-/TF-af)+
_ (28)
o E=T g=ofF- a7 ]
a a3 (T-V/TF-an)

In Figs. 8,9 the k! and K+I are traced versus the position of
heat source. Independentiy of n, K?I equals zero if the source
is at the position E = a.

The obtained solution is a basic solution, analogous to
basic solutions for a crack under a single force or undgr a
single dislocation load (9), (10). Using this solut@on it is
possible to construct other special solutions, for.lnstancg,
by integration, Figs.10,11. In other cases this ba51c.solut10n
can be applied to formulate boundary value problems in form of

- integral equations, which can serve as a starting point for
further analytical or numerical treatments.
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Figure 10 Stress intensity factor xw for two heat sources



