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NUMERICAL SIMULATION OF DYNAMIC CRACK PROPAGATION PHENOMENA BY
MEANS OF THE FINITE ELEMENT METHOD
*
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A virtual crack extension method for the calculation of
energy release rates associated with fracture phenomena
during dynamic crack propagation has been implemented in
a general purpose finite element program. This paper
discusses the application of this method to the
calculation of dynamic stress intensity factors for a
stationary crack in an impulsively loaded center-cracked
panel. The results obtained do compare well with both
theoretical results and with numerical data. Analyses are
also performed for a crack that propagates with constant
and variable speed in a tensile loaded center-cracked
panel. The results indicate that the calculated dynamic
stress intensity factors depend on the manner in which
crack propagation is simulated in the finite element
model. It is shown that for dynamic crack propagation
node relaxation techniques may yield erroneous results.

INTRODUCTION

For the safety assessment of structures, it is necessary to answer
the question whether, for a particular loading system, existing or
potential defects will start to grow and/or under what circum-
stances failure of the structure will occur. The concepts of frac=
ture mechanics provide appropriate tools for describing fracture
processes. They are frequently applied nowadays for the prediction
of crack initiation, as well as slow stable crack growth of stati-
cally loaded structures and for the prediction of fatigue crack
growth in cyclically loaded structures.
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In those cases where inertia effects cannot be ignored, appli-
cation of quasi-static fracture mechanics techniques may lead to
erroneous conclusions, which causes the necessity to use dynamic
fracture mechanics concepts. The main emphasis of dynamic fracture
mechanics is to predict the initiation of stationary cracks in
structures, which are subjected to impact loading. It also focuses
on the conditions for the continuous growth of fast propagating
cracks and on the conditions under which a crack is arrested.

Over the past decade much research work, both numerically and

experimentally, has been and is currently still being carried out

in the field of dyna- mic fracture mechanics. The problem of
predicting the growth rate and the possible crack arrest point is
quite complicated. Various research workers treat this problem by
means of a so-called dynamic fracture methodology, which requires
the combined use of experimental measurements and of detailed
finite element analyses. Results obtained by means of this metho-
dology have been reported, amongst others by Brickstad [1] and
Kanninen [2]. An essential step in this approach is formed by the
numerical simulation of propagating cracks by means of finite
element methods (FEM). The FEM programs used to carry out such
dynamic analyses should enable the evaluation of dynamic fracture
mechanics parameters. This paper concentrates on two aspects of
the application of the finite element method to dynamic fracture

problems, i.e.:

- the calculation of dynamic energy release rates for cracked
bodies which are subjected to arbitrary thermal and mechanical
loadings including initial stresses;

- the modelling of crack propagation phenomena in relatively
coarse finite element meshes using a gradual node relaxatiocn
technique.

First the aforementioned combined numerical and experimental
approach is explained. Subsequently the derivation of an extended
version of the J-integral originally proposed by Rice [3]1, is
presented which takes into account the effect of inertia and body
forces, thermal and mechanical loading and initial strains. In
addition it is shown how the expression for the extended J-
integral may be transformed into a surface integral in order to
enable a more straightforward evaluation of this expression by
means of numerical integration techniques commonly used in finite
element programs. The extended J-integral has been implemented in
the commercially available general purpose finite element program
MARC [4]. The paper discusses the application of this extended J-
integral to the problem of an impulsively loaded center-cracked
panel with a stationary crack. In addition results are presented
for a propagating crack in a center-cracked panel under constant
loading assuming both constant and varying crack speeds. The
present paper finally discusses the observed limitations of node
relaxation techniques for the modelling of dynamic crack
propagation phenomena.
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DYNAMIC FRACTURE METHODOLOGY

In complete similarity with static fracture mechanics concepts, it
is assumed that dynamic crack growth processes for linear
materials are governed by the following condition:

K (8) = Ry (3,T,B) 4>0 (1

where KI(t) is the dynamic stress intensity factor for mode I, &
is the crack velocity and RID is the dynamic crack propagation
toughness, which is assumed to be a material parameter that in

general will depend on crack velocity 4, temperature T and
specimen thickness B.

The dynamic stress intensity factor will depend on crack length
(a), applied loading (¢), time (t), specimen dimensions (D),
temperature (T) and initial stress fields (oi) caused by residual

stresses or by an initial strain field. The prediction of the
crack propagation history and crack arrest event, demands complete

knowledge of the RID vs. 4 relation. Kanninen [2] and Brickstad

[1] have adopted a procedure using both experiments and numerical
analyses to determine this relation. This procedure, which is
referred to as the "Dynamic Fracture Methodology" consists of the
following two phases:

a. Generation phase
In this phase a crack arrest experiment is performed yielding a
crack propagation versus time curve. In addition a numerical
simulation of the experiment 1is carried out by using the
measured crack propagation curve. This is used as input for the
numerical model. This produces calculated dynamic stress
intensity factors as a function of time. Combination of the
ljatter relation with the measured crack propagation curve will
result in a curve, which may be considered as the dynamic crack
propagation toughness versus crack velocity relation.

b. Application phase
In order to predict the crack growth and possible crack arrest
point in a structural component, the inverse problem is solved.
Now the actual stress intensity factors are calculated for the
structural component, that is subjected to a particular loading
history, by means of a dynamic FEM analysis. These calculated
values are compared to the fracture toughness curve obtained
during the generation phase, ean. (1), and from this the crack
growth is predicted.

As may be clear from the above, the availability of accurate

computational techniques to calculate dynamic stress intensity
factors will to a great extent determine the successful
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application of the methodology. In similarity with static problems
these factors can be obtained directly from displacement and/or
stress fields around the crack tip. However this causes severe
problems in practical situations due to the complex nature of the
expressions to be used and because of the lack of theoretical
solutions which incorporate the effects of reflecting stress
waves. In addition such a procedure would require a very fine
distribution of finite elements around the crack tip. For these
reasons an approach in which the stress intensity factors are
derived from quantities that are evaluated away from the crack eip
is preferable. One of the quantities commonly employed for this
purpose is the elastic energy release rate G. For a structure in

which a crack propagates with arbitrary velocity a the net change
of energy may be denoted Dy:

Y-p-w-T=CA (2)
where P is the rate of work done by external forces, W is the rate

of deformation energy, i is the rate of kinetic energy and A is
the crack surface. The dynamic energy release rate G may therefore
be expressed as:

dP dw dT
G,a—A_"d_A- aA (3)
For elastic material behaviour the energy release rate G is
identical to J and thus according to Nishioka, et al [5] the
following holds:

2

KI .
G=4Jd=— AI(a) (4)
E

1 1
Where E = E for plane stress and E = —E—T for plane st ain.
1=v

2
. B)U"Bz) 2 a .2
AI(a) = g with 8, = 1-(-C- y i=1,2 (5
(1-v) [48,8, = (1+62) | i

and Cy = longitudinal wave speed

C, = shear wave speed

For the limiting case a -+ 0, Al(é) = 1. and thus eagn. (4) reflects

the well known relation between J and K for static applications.
With the aim of calculating dynamic stress intensity factors from
J-values, an expression for J that is suitable for a
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straightforward implemenation in a FEM program is described in the
next section.

DERIVATION OF AN EXTENDED J-INTEGRAL

Since the J-integral was proposed by Rice, various researchers
have presented extensions of the initially proposed J-integral in
order to account for isolated effects like plastic deformation,
body forces, thermal 1oading, inertia forces, large displacements
and large strains. In the following section we shall present a
modified J-integral, which incorporates most of the aforementioned
effects.

Conservation laws

in order to evaluate the forces acting on defects like cavities or
cracks in elastic structures poth Rice [3] and Eshelby [6] used
path independent integrals. It was shown by Knowles and Sternberg
[7] that the integrals used DY Eshelby and Rice are related to a
class of conservation laws in elastic continua, which may be
derived from the principle of minimum potential energy and from
the invariance of strain energy density with respect toO particular
coordinate transformations. Along a similar scheme as described by
Bakker [8] a conservation law for (non)linear elastic continua can
be derived which takes into account the effects of inertia forces,
body forces, thermal strains and initial strains.

Consider a structure with a subregion Q that has a volume V and a

boundary T with surface S to which an arbitrary coordinate mapping
Al
x = x + 6X is applied. When the coordinate change §&X is

Tnfinigesimaf, it can be shown that the following holds:

i
6xk(w ij oij axk) nJ ds +
T

(6)

0

968X Ju u €, .
R ] oma - - _i o ol ) i3 -

j{ axj(“ 85k~ %13 axk) «ex (g = ely) g3 " %ag Tax )} av=0

Q

In the derivation of this conservation 1aw use has been made of
the following definitions and assumptions:

. The strain energy is defined Dby:

€
- e
W= [ o5 deij (N
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If W is a function of elastic strains only, the stresses follow
from:

e
i Bw(eij)
ij e
aeij

] (8)

« The elastic strains are defined as:

e tot ¢
eij = Eij €5 (9)
du du,
tot 1
with: €,. =35 [ : + ——l] = total strain components and

ij 2 axj Bxi

o

Eij = initial strain components consisting of eigen

strains, thermal strains, etc.
- For a dynamic loaded structure the equation of motion reads:

90, .

1] - ..
%, * By =0y 18

where fi are the body forces, p the mass density and Ui the

acceleration components.

« In addition ij stands for Kronecker's delta and nj are the

components of the outward normal on T.

For a unit virtual translation of @ in the X direction and in the

absence of body forces, inertia effects and initial stresses eqn.
(6) reduces to

j(w n, -ty 557) 4s = 0 (11)

where the traction vector on I' is defined by ti = aijnj'

Equation (11) states that during such a translation of a subregion
of the body the change of the strain energy is equal to the work
done by the external tractions on the surface of the subregion. It
represents the first conservation law derived by Knowles and
Sternberg, which is related to the momentum tensor equation used
by Eshelby and to the J-integral proposed by Rice.
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Application to sharply notched defects

The conservation 1aw according to ean. (6) will now Dbe applied to
a structure containing a sharply notched defect in order to derive
a general path—independent integral, which characterizes the
fracture process.

In the following we will restrict ourselves to 2 plane structure
only without the loss of gener-ality. Consider a plate of thickness
t containing a crack which coincides with the x1 direction. The x2

axis is per‘pendicular to the crack surface. As illustrated in Fig.
1 we consider a subregion @, with a closed surface I‘,*Fs +rp where
1

r, is any arbitrary chosen contour surrounding the crack tip, rs
1

the fracture surface and I‘p is a circular contour with radius r=»0

surrounding the process zone that is of negligible size and in
which continuum mechanics may not be applied. Note that the normal
direction on 1‘p is chosen opposite to the normal on T;.

If a crack extension Aa is considered, which may be treated as 2a
constant virtual coordinate movement 66X = (pa, O, 0) in Qi

application of the conservation 1aw of eaqn. (6) to the region &

with its closed surface consisting of Ty I‘s and I‘p will result
1

in:
Ju 3u 3u,
i i lim i
; Wy =ty 5x) 957 ) F1 e dS = rso j (Wny -ty 5] 90
1 1 1
T, r T
S, P
(12)
o
u J€
- o i ) ek i3 -
] ((ry ot ) 3, 915 Tax, Jdav =0

0

The amount Of energy that is dissipated in the process zone per
unit crack extension, i.e. the rate of energy released at the
crack tip, is expressed by the 1imiting value of the integral
along I‘p in the above relation. We will define this rate of energy

as:
= 11m Ju

i
J = 0 (W n, ti ,—a;—{) ds (13)

T
p

Based on eqn. (12), J may be written as:

2,211



FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

(14)

Jdu Bsij
- J ((fi = pui) '3-;1- - oij X ) dv
Q

For the situation that body forces, inertia forces, initial

strains and tractions on the crack surfaces are absent, J reduces
to the path-independent integral proposed by Rice:

3=J=[[Wn1-ti—i—)ds (15)

r,

The stress/strain fields at the crack tip may be characterized by
evaluating an integral away from the crack tip. In the case that
the previously mentioned effects are present the property that J
can be determined based on the far field solution is no longer
valid, because the value of the integral along I', will depend on

the distance of I', to the crack tip. The expression for the

extended J-integral according to eqgn. (14) is identical to the one
derived by Kishimoto et al [9]. It is worth mentioning that there
no assumptions were made for the particular choice of T,. This
choice is therefore arbitrarily. Evaluation of J however requires
full knowledge of the mechanical state within the @, region. The

only restriction imposed so far is that a strain energy density
function exists which relates stresses to strains.

~

Numerical evaluation of J

The solution of realistic fracture problems in most cases only can
be carried out using numerical techniques like e.g. the finite

element method. The numerical evaluation of J in 2D situations
requires the calculation of both a line and a surface integral.
This usually causes problems, because of the discontinuities of
stresses at element boundaries. These discontinuities make it
necessary to apply some smoothing of the stress distribution.

In the following an alternative formulation of J in which only
surface integrals are involved has been derived. Consider a region
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Q, surrounded by the contours Ty, T2 and rs (see Fig. 2). By using
the conservation 1aw of egn. (6) and by choosing 6X, such that:
6x2 = 6x3 = 0 both in Q2 and on its boundary
6x, = pa on Ty
es)t1 =0 on Iz,

the following expression can pe derived:

du du,

i i
Aa S(W 845~ %13 ax1] n, ds = 8x, ty 5%, ds +
I'y T
S2
(16)
o
96X Ju du €, .
- __.—-l - ..l - L ._..-i— - _—i‘]——
j{ = (W 85~ %45 ax1) +ooxy ey = ety T %1y Texg Jlav

Q2

Note that ésx1 will vary in Q2 between Aa and O.

38X

Since 1 20 in 2, substitution of eqgn. (16) into (14) yields:

-~ 1 Bsx1 aui
g = = j Ta %, (W 85 = %43 ax1] i =
4 j
(7
[
8X 3u €, . 86X Ju

. L) —t - i) N . | _i

j = (1 i) 3%, T %1 Tox, ) av a Ui 3%, 48

Q T

wher‘erQ,+QzandI‘=1‘ + T .

s S, Sy
within a finite element program this expression for J can be
readily evaluated by means of the commonly used numerical
integration methods .
in case of the absence of body forces, free surface tractions,
inertia effects and initial strains the above expression reduces
to:

) dv (18)
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An alternative technique to evaluate J values within a FEM context
was independently developed by Parks [10] and by Hellen [11]. With
this technique, which is known as the stiffness derivative method
or the virtual crack extension (VCE) method, the change in
potential energy caused by an infinitesimal crack extension is
calculated. For elastic materials the energy release rate obtained
via this technique equals the path independent J-integral of Rice.
The expression that forms the basis of the VCE method reads:

1
J ow i J (W &|J| + sw |J]) adv (19)
Q

where |J| is the determinant of the Jacobian of the element
mapping.

This technique is available as a standard feature in the MARC
program. For the evaluation of eqn. (19) a numerical differen-
tiation is performed in order to obtain approximations for &|J]|
and SW. Although this is not a serious drawback in practical
situations, the distribution of the virtual coordinate movement

6)(1 must be selected such that not very large nor too small crack

extensions are considered, because of the risk of obtaining
rounding off errors or wrong approximations of the derivatives
involved. In contrast to this, numerical evaluation of expression
(18) will not require such numerical differentiations. It was

shown by Bakker [8] that J according to eqn. (18) and J of egn.
(19) are identical.

Although a different starting point was used, deLorenzi [12] has
derived an identical expression for egn. (17) for the case that
inertia forces and initial effects are absent.

Physical interpretation of J

The J-integral which was proposed by Rice as defined in eqn. (15)
can be interpreted as the amount of energy which flows through the
contour I', per unit crack advance. When during crack propagation

no work is done by tractions within the contour TI', or on the crack

surface and if no energy is dissipated other than the energy that
is associated with crack growth in the process zone, J equals the
rate of energy that is released at the crack tip. This energy rate
is absorbed in the process-zone when advancing the crack forward.
In case the previously mentioned conditions are not fulfilled, the
energy rate J that flows through I', will depend on the choice of

I'y and does thus not equal the energy released at the crack tip.

In contrast J according to eqn. (14) defines the net difference
between the rate of energy that flows through ', and the energy
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that is consumed within the region enclosed by I',. J therefore

expresses the energy flow to the crack tip per unit crack advance
and it is independent of the choice of T,.

EXAMPLES OF DYNAMIC FRACTURE APPLICATIONS

As a first step towards the prediction of dynamic crack propa-
gation and crack arrest phenomena by means of the extended J-
integral, several dynamic fracture problems have been analyzed. In
order to demonstrate and to verify the applicability and relia-

bility of the J-integral concept to dynamically responding
structures, dynamic stress intensity factors for an impulsively
loaded cracked panel with a stationary crack have been calculated.
For the purpose of investigating the numerical modelling of crack
propagation, the problem of a fast running crack in a uniform
loaded center-cracked plate has been analyzed.

Dynamically loaded center-cracked rectangular plate

This first problem consists of a center-cracked plate which is
initially at rest and which is subjected to a uniform tensile load
which is suddenly applied and then maintained. This problem was
originally analyzed by chen [13] who used a finite difference
method. Details on the dimensions, material properties and loading
conditions are given in Fig. 3. The dynamic stress analysis has
been carried out by means of the MARC finite element program.
Because of symmetry only one quarter of the plate was modelled
with 90 eight noded isoparametric plane strain elements.

The implicit Newmark=beta method with a constant time step of 0.15
ysec. perform the direct time integration. A consistent mass

matrix has been used in this analysis. The calculated J-integral
values have been converted into dynamic stress intensity factors.
Fig. U4 shows stress intensity factors as a function of time
normalized with respect to the static stress intensity factor for
an infinite plate. The solution obtained by Chen is denoted too in
Fig. 4 and as may be concluded from this a good agreement between
both solutions is sbtained. In this figure characteristic time
intervals are indicated at which particular (reflected) waves
arrive at the crack tip. At L, the longitudinal wave, initiated at

the boundary, will arrive at the crack tip. At R, the Rayleigh

wave generated Dy the previously mentioned longitudinal wave has
travelled from one crack tip to the other. At P, the scattered

longitudinal wave has travelled from the crack tip to the nearest
boundary and back to the same tip. At S, the scattered transverse

wave has travelled from the crack tip to the nearest boundary and
back to the same tip. similar indications are given for arrival
times R,, P, and S: of Rayleigh-, longitudinal- and transverse
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waves that are generated at L, when the longltudinal wave has

crossed the complete length of the strip and has reflected back to
the tip. The results of this test problem clearly demonstrate the
capabilities of the employed finite element approach to simulate
stress wave propagation and to accurately calculate dynamic stress
intensity factors. The results obtained agree with FEM results
reported by other researchers e.g. Mall et al [14] and Brickstad
[1] who derived the stress intensity factors from the crack
opening displacement. It should be pointed out that the extended
J-integral enables the accurate calculation of dynamic stress
intensity factors with standard isoparametric elements. A separate
analysis in which so-called quarter point elements were employed
to represent the 1/¥/r singularity of stress and strain distribu-
tions around the crack tip has indicated that the difference in
the resulting stress intensity factors versus time was less than

1%.

Fast running crack in a center-cracked square plate

The second test problem consists of a tensile loaded center-
cracked plate in which a crack propagates at constant speed. This
problem has been chosen, because the results can be compared with
those of other authors. The plate is loaded by a uniform tensile
stress in the direction perpendicular to the crack. This uniform
load remains constant in time. The crack is initially symmetrical
with a half-crack length a of 0.2 W, where W is the half-width of
the plate. This crack is allowed to propagate symmetrically at
speeds of 0.2, 0.4 and 0.6 times the shear wave speed of the
material. Details on the material properties, dimensions and
loading conditions are given in Fig. 5.

The main purpose of this analysis is to investigate the ability to
simulate crack growth in relative coarse meshes by applying
incremental crack propagation that results in partly cracked
elements. This ability forms an essential requirement for
performing efficient generation- and/or application phase crack
propagation analyses.

Crack growth is modelled by means of the so-called node relaxation
technique, which consists of the following steps (see Fig. 6)

-~ at the moment the crack tip position passes an element
border the boundary conditions at point 1 and 2 are
removed. In addition external forces are applied with the
reaction forces at these points computed at the instant
the crack-tip reaches point 1;

~ these external forces are then assumed to decay in a
given number of increments until the crack-tip location
reaches the next element.

In the present test problem a quarter of the plate has been
modelled by means of eight-noded elements. Both the forces at the
corner node (point 1) and at the mid-side node (point 2) are
released simultaneously in the following manner:
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a .
Fi = Foi {1 - &(t)/d} i=1,2 (20)

where d is the element length, s§(t) the amount of crack
propagation along the element, Foi the reaction force acting at

node i at the time instant the crack reaches node 1 and F‘i the

force acting at node i at time t. In the literature various
suggestions have t en made for the choice of the parameter o. Most
commonly a linear decay function is suggested i.e. a = 1. Rydholm
[15] has applied a value of .5 in order to generate a constant
energy release rate for quasi-static crack propagation along the
current element. Malluck and King [16] have suggested a decay
function based on a = 1.5. In the present example decay functions
have been used with o values of .5 and 1.0 . Fig. T shows the
normalized dynamic stress intensity factors versus the relative
crack length. The KI values have been derived from the calculated

J values using eqn. (3). The velocity dependent correction factor
AI of the latter equation is depicted in Fig. 8. The solid

horizontal lines in Fig. 7 represent the theoretical values f.or
cracks that propagate with constant velocity in an infinite,
tensile loaded plate. These values were derived by Broberg [(171.
Since they are applicable to cracks that do have initial lengths
equal to zero, deviations are observed up to a relative crack
length of a/W = .3. Subsegquent to this initial effect a quasi-
static state is reached during which nearly constant values are
obtained up to the point where reflecting waves reach the crack
tip. Since this is not the case for the problem with the highest
velocity, it must be concluded that the oscillating behaviour of
the KI values is caused by another effect. In general the results

obtained are, when averaged, similar to the theoretical solution.

For a realistic crack propagation analysis it will be necessary to
consider a varying crack propagation velocity. For this reason the
same problem was analysed assuming a crack velocity that increases
linearly with time from O to 1600 m/s and then decreases linearly
until crack arrest occurs. In order to determine the influence of
the element size used, two different meshes were considered. From
Fig. 9 it may be concluded that even for the fine mesh,
oscillations occur. Application of a decay function that is based
on a = .5, for a constant velocity case in which no reflections
are present, produced results as shown in Fig. 10. From this
figure it may be concluded that the calculated KI values depend on

the decay function. It should be stressed that the values
corresponding with the points where the crack passes an element
border are strongly influenced by the chosen decay function. The
latter values are commonly employed by research workers when
simulating dynamic crack propagation. Mesh refinement results in
even larger oscillations as is shown in Fig. 11.
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CONCLUSIONS

The extended J~integral J, that is presented in this paper,
enables the accurate calculation of dynamic energy release rates.

The conversion of the expression for J into surface integrals
allows for a straightforward implementation into FEM programs. The
numerical simulation of crack propagation in dynamically loaded
structures results in calculated fracture parameters that are
influenced by the particular choice of the decay function in the
node relaxation technique. Additional research will be required
for the numerical simulation of dynamic crack propagation pheno-
mena. Until the accurate calculation of dynamic fracture para-
meters for fast propagating cracks is possible, results obtained
with the commonly used node relaxation techniques have to be
interpreted with care.
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Figure 1 Closed contour used in the definition of the J-integral
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/
crack

Figure 2 Definitions used to transform contour integral along T,

into surface integral over Q, for numerical evaluation

of J
o
o(t).
400 MPa
|
Dynamic load: step function of o(t).
23 ] —»>
2L time
v =0.3
E = 200 GPa
P = 5000 kg/m’
1 28 =0.48 cm
L =2cm
N <:1 = 7338 a/s
c = 3922 w/s
L 2
—— =t ¢:'t = 3632 m/s

Figure 3 Dynamically loaded center-cracked rectangular plate
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q = Kdynamic/o V 7 a . current results
S~ —— Kstatic/g V ma = 1.03
------ Chen finite difference results
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Figure 4 Comparison of calculated dynamic stress intensity
factors for a dynamically loaded center-cracked
rectangular plate

v = 0.286
E = 75.616 GPa
P = 2450 kg/m’
2a = 1.6 cm
2L L=W = 4 cm
2a e = 6327 m/s
T 1
c, = 3464 m/s
cR = 3200 m/s
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Figure 5 Center-cracked plate model used to study the effects of
node relaxation
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Figure 6 Node relaxation technique
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Figure 7

Dynamic stress intensity factors for crack propagating

at constant speeds of 0.2, 0.4 and 0.6 times the shear

wave speed
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Figure 8 The velocity dependent function AI in the relation
between J and KI
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Figure 9 Dynamic stress intensity factors for a crack propagating
at varying speed
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Figure 10 Dynamic stress intensity factors for cracks propagating

at constant speed of 0.6 times shear wave speed for
various decay functions
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Figure 11 Dynamic stress intensity factors for crack propagating
at constant speed of 0.6 times shear wave speed for two
different element sizes
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