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EFFECT OF CRACK-TIP PLASTIC ZONE
ON KINKED OR BRANCHED CRACK GROWTH

H. HORITY and S. NEMAT-NASSER™¥

It has been noted that crack growth phenomena,
such as unstable initiation, kinking, and
branching, are strongly affected by, or have
even resul ted from, the presence of a plastic
zone and an associated residual strain at the
original crack tip. As typical examples of this
kind of crack growth, the crack branching of a
mode I crack and the unstable crack initiation
from the ends of a shear crack under compression
are considered. For both cases, an analytical
model is developed, and numerical results are
obtained in order to show the interplay between
plasticity and fracturing.

EFFECT OF CRACK-TIP PLASTICITY ON CRACK BRANCHING

To analyze the branching of a running crack, the stress
distribution around the crack tip has been investigated,
and the fact that the maximum tangential stress moves out
of the plane of crack propagation at high velocities has

been reported. However, both the predicted crack branch-
ing angle and the estimated crack tip velocity at branch-
ing appear to be higher than those observed in
experiments. Experimental observations have shown that

there is no single instance of crack branch initiation; in
fact, there are multiple branching attempts in the crack
branching process; see e.g. [1,2]. The possibility that
crack branching is the result of the nucleation and
coalescence of many interacting microcracks has also been
pointed out. It is noted that the model of crack branch-
ing must be based on the associated microevents at the
crack tip[3]. 1In the literature, however, there seems to
exist no attempt to consider the effect of plastic defor—
mation at the running crack tip on the branching
phenomena. In the present work, we consider the effect of
a crack—-tip plastic zone on crack branching. To simplify
the analysis, a static problem is studied.
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Branching Crack with Plastic Zone

There are numbers of reports to show the importance of the
microevents at the running crack tip for its bifurcation;
see e.g. [3]. In this work, to avoid the difficulties in
jdentification and modeling of the microevents and com-—
plication in the dynamic formulation, we treat a static
problem and we consider only the plastic zone (caused by a
static loading) as crack—tip microevents.

Horii, Hasegawa, and Nishino[4,5] report the sig-—
nificance -of the residual strain on the crack initiation
with a model shown in Fig. 1. It is shown that the stress

intensity factor at the tip of the extended crack is
reduced because of the residual strain in the plastic
zone. As a consequence, some energy must be supplied to
initiate the unstable crack growth. For brittle materials
the required energy for the crack initiation is small and
the Griffith criterion turns out to be valid even with the
plastic zone at the original crack tip. With increasing
ductility of the material, the required energy for the
crack initiation increases drastically, which may lead to
the stable crack growth.

In this paper we consider a model shown in Fig.2 to
investigate the effect of the plastic deformation at the

tip of the original crack on the crack branching.
Comparing results with those obtained for the model shown
in Fig. 1b, we examine the possibility of the change in

crack branching features because of the microevents at the
crack tip.

Analytic Model

First we consider the distribution of the plastic strain
at the tip of the original crack; see Fig. la. The length
of the plastic =zone, which makes an angle 8 with the x-

axis, is denoted by ﬂp. The boundary conditions are
o =T = 0, on 0Q, (D]
y Xy
wh =, ot =1y on OP and OP’ @
y y rée Y
where Ty denotes the yield stress in shear. The condition
at the end of the plastic zone,
stress is bounded at P and P’, (&)
must be satisfied. As a loading parameter, we introduce

the ~"applied K-value” KIA which is the stress intensity

factor when no plastic zones exist at the crack tip. With
the given value of KIA’ the length of the plastic zone and

the distribution of plastic strain (slip) are obtained as
a solution of the problem stated above.
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Next, with the obtained distribution of the residual
strain, we calculate the stress intensity factor at the
tip of the branched crack; see Fig.2. In this problem the
additional boundary conditions

U -

6 T = 0, on 0Q and 0Q (€:D]

are assumed. Solving the second problem, we obtain the
stress intensity factors at the tips of the branched
cracks for given values of ¢ and ﬂt/ﬁp.

Formulation
Muskhelishvili’s complex stress functions & and ¥ are
employed. For a single dislocation at zO near a semi-—
infinite crack, we introduce stress functions 0D=00+¢R and
=y + s s
!D ¥0 ﬂR where 00 and !0 are stress functions for a single
dislocation in an infinite plane and OR and 'R are the

complementary potentials to satisfy the stress free condi-
tion . ® and ¥ are obtained by the method of

R R
Muskhelishvili[4,5]. They are given by
o o afa
o) = —— , ¥ = + ;
0 z - z g z — Z (z — z/)2
0 _ 0 9_ _
QR = :a[F(z.zo) + F(z,zo)] - a(z0 - zo)G(z,zo) 5
VR = @R - OR - ZOR . 5
with
1 Z0 3
F(z.zo) = 5[1_ ;—]/(z-zo), G(z,zo) = SZEF(Z'ZO)’ B>

where a=u([ur]+i[ue])e19/ni(K+1). [u]=u+-u—. and =0 (2).

Stress functions ¢D and WD automatically satisfy the

stress free condition (1) on the crack surface. We intro-—
duce distributed dislocations along the plastic zones OoP
and OP’; see Fig.la. From (2)-1(the first equation of (2))
and the symmetry of the problem, the dislocation density
is given by

a(£)=—isp(£)e‘? at z0=£e‘? and
«(8)= iep(g)e"? at zo=£e"? (&)

where BP(E) is a real function to be determined. The yield

condition along the ©plastic zone, (2)-2, leads to the
singular integral equation for the dislocation density
BP(E),
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9 B (£) [ Kia 1 5
—2J' P_P d£+I Pg (£)K(g, n;B)dE+ gsinBeosy = Ty, €))
0 &€ —n 0 P 2nn
where
; 216 2 2insin26
K(,n;8) = Refe [ — + - 1}
£ - nezle E - nezle)2
+ 4nsinzoRe{e2!®[F (z,zg) + F' (2,7
- ele % (2, Ty + el (z,z)1) (9
with Re{ } for the real part of the argument; F’ = %;F.

Solving (8 for the dislocation density Bp(&) numeri-
cally with the condition (3), we obtain

KIA/TYJnﬂp = 2,3b for 8 = 76.1°, (@YD)
which provides the relation between Qp and KIA' The

orientation of the plastic zone is set to be 76.1° such
that the dissipated plastic work is maximized for a con—
stant KIA'

With the obtained distributed dislocations as the
residual strain, the solution to the second problem
(Fig. 2) is formulated as follows. Using the solution for
a dislocation near a semi—infinite crack, (5) and (6), the
branched portion of the crack OR and OR’ are replaced with
distributed dislocations (density is given by (7 with
complex function Bt(E) and ¢). With the presence of the

residual strain (dislocations with the obtained density
Bp) along OP and OP’ and the external loading KIA’ the

stress free conditions (€:D) lead to a singular integral
equation for dislocation density Bt’

9,18, firg _
—2I —dE + J (B K, (g,n,®+R K (g, n, ®) }dE
t1 2
0 &-n 0
Kia

2nn

cos%(coszi+isin¢) =0, (DD

Q
P
+* Io BPKP(E,n,B,O)dE+ ot2

where K Kp are obtained similarly to (9) with (5

1’ K2.
and (6); lengthy expressions for them are omitted.
Solving (11) numerically, the stress intensity factor

at the tip R and R’ are obtained, using the relation
between Bt and KI'KIT
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Results

The values of the stress intensity factors are plotted in
Fig.3 as functions of the branching angle ¢ for indicated
values of Qt/ﬁp. The limiting value of KI at large Qt/ﬁp

(no plastic zones) agrees with numerical results by Lol[6].
At large values of Qt/ﬂp, KI attains the peak value at ¢ =

25-300°; the angles for KImax and KII= 0 are close. With
decreasing value of &t/ﬁp the peak value of KI decreases
while the critical angle ¢ does not show drastic
variation. Although the stress distribution at the crack

tip is very different due to the residual strain, the
critical branching angle is not affected by the crack tip
plasticity.

In Fig.4 the variation of the maximum value of KI with
ﬂt/ﬁp is shown with results for the straight crack exten—
sion (Fig.1lb). It is seen that KI value is less than that
for the <case with no plastic zone (ﬂt/ﬂp= ®) because of
the residual strain in the plastic zone. The value of KI

for the branched crack is less than that for the straight
extension at all values of Qt/ﬁp. For the static calcula-

tion of the problem shown in Fig.4, no indication is
observed for the possibility of the branching rather than
straight crack extension. In addition, note that the
required energy for the crack branching can be calculated
from this result; see [4,5].

In this work calculations are only for static problems
and only the crack tip plasticity is considered as
microevents. There seems to exist a possibility that the
inclusion of the dynamic effects and other models of
microevents may lead to results which provide a crack
branching condition.

MICROMECHANISM OF BRITTLE-DUCTILE TRANSITION

Another example of phenomena caused by the interaction
between crack growth and plastic deformation appears to be
the wunderlying micromechanism of the transition from the
brittle to the ductile mode of failure that is observed
under increasing confining pressure in solids containing
microdefects. The slip along the initial flaw, caused by
the applied farfield compression, results in the formation
of plastic zones and tension cracks at the ends of the
initial flaw; see Horii and Nemat—Nasser[7].

Fig. 5a shows a single flaw in a Columbia resin CR39
plate compressed with constant stress ratio. Because of
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the presence of the lateral confinement the growth of
tension cracks 1is arrested. The residual strain distribu-
tion in the unloaded specimen is shown by the photoelastic
picture on Fig.5b. It is seen that extensive plastic flow
has occurred. On the basis of this observation we shall
present a mathematical model for brittle—ductile
transition.

Model of Brittle—Ductile Transition

The mathematical model is shown in Fig. 6. It consists of
the frictional and cohesive flaw PP’ which has produced,
at its tips, tension cracks PQ and P’Q’, as well as col-
linear plastic slips PR and P’R’. The boundary conditions
on the initial flaw, the cracks, and the plastic zones are

u+ =u.45 T = -1 + uo_, on PP’ 12>
Yy Yy Xy € y

6g = Trg = 0, on PQ and P’Q 13

atf = ul, ro. = Ty on PR and P'R’ (14>
y y Xy Y

where Te is the cohesive stress, H is the coefficient of
friction , Ty is the yield stress in shear. The principal
stresses at infinity are prescribed to be 9, and Ogy- The
stresses at the ends of the plastic zones must be bounded.

Hence we have

KII = 0, at R and R’. as

Formulation

e ———

For the formulation of the boundary-value problem stated
above, Muskhelishvili’s complex stress function & and ¥

are employed. We introduce stress functions ¢D=¢0+OR and

!D=!0+¥R for a pair of antisymmetric dislocations, and "
L L J (] (3 ] . G & .
—00+OR and ¥ = !0+!R for stresses at infinity which

satisfy
= = 16)
To + R udo, OR o,
o [ [ ] L
+ = - =
Txy TR . + uoy, UR 0, «an
where oo and o are the normal and shear stresses cor—

responding to 00 and !0; UR and TR associated with the

2,174



FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

[
supplementary stress function QR and 'R' 00 and 13 due to
g 00 ® @ @

@
QO and #0, and UR and R due to QR and ‘R

. ® ©

The stress potentials QR and 'R' and QR and 'R are
obtained by the method of Muskhelishvili; see Horii and
Nemat—Nasser[7] for details. From (16) and a7 it is

seen that the stress function O=¢D+¢m and !=!D+¥m satisfy
12)-2.

Suitably distributed dislocation of densities o, and

ap are introduced to represent the tension cracks and the

plastic zones. The remaining conditions (13) and a4 -2
lead to a system of integral equations for the dislocation
density o, and o_. Solving this system of equations with
(15) we obtain the values of KI/rYJnc, 01/1'Y for assumed
values of 96, Qt, Qp and 02/01, and given values of v, M
and TC/TY, us ing the relation Dbetween the dislocation
density and the stress intensity factors. In what follows

numerical results are shown for y=450, u=0.4, and rc=0,

Numerical Results

For a given 02/0,, KI/T Jync and 01/1Y are calculated as

Y
functions of Qp/c. ﬂt/c, and 6. The orientation 8 is
chosen such that KI/|01IJnc is maximized. Numerical

results show that tension cracks emanate from the flaw
tips at an angle of about 70° with respect to the flaw
orientation, and then curve and grow towards the direction
of maximum compression, which asgree with experimental
observations. For a fixed 02/01 and given values of ﬂt/c

and Qp/c, we obtain KI/TYVnc and 01/1Y corresponding to
the critical 8. Typical results are shown in Fig. 7,8

From numerical results such as shown in Fig. 7a,8a we
obtain a solution curve in the (Qt/c,ﬁp/c)—plane, by

mak ing use of the following fracture criteria:

when cracks are growing, KI = Kc
when cracks are stationary, 0 < KI < Kc, and 18
when cracks are closing, K., = 0,

I
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where the fracture toughness Kc is prescribed. The cor-
responding axial load al/rY is then established from data
similar to those shown in Fig. 7b, 8b.

It is seen that different crack and plastic zone
growth regimes are obtained for different values of the
"ductility”

A = KI/rYJnc (19

which has a profound effect on the general response
predicted by the model.

A relation between the crack length and the plastic
zone size is established from Fig. 7a,8a and the fracture
criteria as). A typical example is shown in Fig.8a for

02/0l = 0.15 and 4& = 0.02. The curve starts at the

origin. As the axial load is increased, only the plastic

zones develop, until the crack nucleation condition, KI=

Kc, is attained. This occurs at A when ﬂp/c = 0.002, a

negligible wvalue. Upon further increase in axial stress
at a constant stress ratio, both the tension cracks and
the plastic zones grow monotonically, as the contour
corresponding to KI/TYm = A = 0.02, form A to B. At B

the tension cracks attain their maximum size, after which
the plastic =zones continue to grow, relaxing the stress
field at the crack tips and possibly causing partial crack
closure. This occurs at point C, where the stress inten—
sity factor vanishes. From C to D the size of the open
portions of the tension cracks is reduced, so that the KI

= 0 is maintained. We refer to this type of crack and
plastic zone growth regime as the "brittle mode”, which is
characterized by the jnitial part of the curve where
tension crack growth dominates the plastic flow.

Brittle mode. Similar results are obtained for other

values of A and 02/01. With the curve in the (Qt/c,np/c)—

plane so established, the axial load can be calculated
from results similar to those shown in Fig. 7b, 8b. Fig. 9
illustrates the crack and plastic zone growth regimes, and
yield the relations between the axial load and the lengths
of the crack and the plastic zone for A = 0. 08. It is
seen that tension <cracks cease to grow when the plastic

zones attain a size comparable with the crack length. The
growth of the plastic zones accelerates after the tension
cracks attain their maximum length. The maximum length of

the tension cracks may be regarded as representing a
measure of the underlying brittleness.

Ductile mode. To examine the <crack growth regime at
greater values of 02/01, solution curves for small crack
lengths are plotted in Fig. 10. We observe a different
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pattern of crack and plastic zone growth when 02/01 is

increased from 0.25 to 0. 275. Here the size of the plas—
tic zones are dominating the crack length from the
beginning. A process of this kind characterizes the
"ductile mode”.

Transitional mode: unstable crack extension. In the
brittle mode, the growth of cracks and plastic zones is
stable. On the other hand, if the ductility is inter-—

mediate (0. 12<nA<0.26) and the stress ratio is small, we
have a “transitional mode”, which is characterized by
large plastic zones developing before crack initiation,
and by wunstable <crack growth, accompanied by the short—
ening of plastic zones after crack initiation.

In the transitional mode the plastic zones first
emerge and grow with increasing axial load until the
condition for crack initiation is satisfied. At this
stage, tension cracks suddenly grow in an unstable manner,
attaining a finite length, while the calculated size of
the plastic zones decreases. Typical crack and plastic
zone growth regimes are shown in Fig. 11 for A = 0. 16. The
solid and broken lines are equilibrium curves for indi-
cated stress ratios; the solid lines are for stable
growth. The dot—dashed lines indicate unstable crack
growth accompanied by the shortening of plastic zone
length.

Brittle—ductile transition. From the results discussed
above in this section, one may seek to quantify the
brittle—ductile transition in terms of the variation of

the material ductility A and the pressure 02/01. The
maximum length of the tension cracks represents a measure
of the brittleness of the process. This maximum length is

plotted as a function of 02/0l for indicated A in Fig. 12.

Solid lines correspond to the response in the brittle
mode, and broken lines to the response in the transitional

mode. The shaded area represents response in the ductile
mode. All curves fall quickly with an increasing stress
ratio, indicating the effect of pressure in suppressing
brittleness. Three different response modes are obtained
depending on A and 02/01. From results of Fig. 12 we may
represent these schematically in a brittle—ductile

diagram; see Fig. 13.

Comparison with experimental results - A series of model
experiments on Columbia resin CR39 plates containing a
single flaw is performed for c = 9mm and 02/01 = 0. 025,

0.05 and 0.1, and for c = 18mm and 02/01 = 0.1 and 0. 15.

The observed maximum crack lengths are plotted in Fig. 12.
It is seen that the data for c = 9mm and 18mm fall on the
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curves for A = 0.15 and 0.1, respectively. From these

results it follows that KI/TY for this material is about
0. 8vVmm.

Experiments on actual rock samples have shown the
response in triaxial compression to change from brittle to
ductile as the confining pressure is increased. Mogi[8]
has summarized experimental data for different rocks; see
Fig. 14. The wultimate strength of the specimen with
brittle failure is marked with solid symbols. The
stresses corresponding to the knee of the stress—-strain
curve are plotted with open and semi-solid symbols for the

ductile response and the transitional response,
respectively. It is seen that an increase in the stress
ratio from 0.2 to 0.3 results in a change from brittle
failure to ductile deformation. Our analytical results

are in accord with this feature.
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Fig. 1 (a) Planes OP,0P' of the plastic flow at the tip of a semi-
infinite crack 0Q, and (b) the extended crack 0Q with the residual
strain along the plastic zones 0'P,0'P'.

Fig. 2 The branched crack OR,0R' with the residual strain along
the plastic zones OP,OP' at the tip of a semi-infinite crack 0Q.
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Fig. 3 (a) The mode I and (b) mode II stress intensity factors at
the tip of the branched crack as functions of the branch angle.
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Fig. 4 The mode I stress intensity factor at the branched crack tip
and that for the straight crack extension as a function of zt/lp.
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Fig. 5 (a) Arrested tension cracks under axial and lateral compression.
(b% Photoelastic picture of the unloaded specimen.

al

transition with a pre-existing flaw
, and plastic zones PR and P'R'.

Fig. 6 Model of brittle-ductile
PP', tension cracks PQ and P'Q'
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Fig. 8 Contours of constant (a) KI/TY/E and (b)o,/ty in the Rystpy”
plane.
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Fig. 9 (a) Relation between the crack length and the plastic zone
size under the proportional loading. (b) The corresponding relation
between the axial load and the lengths of the crack and the plastic
zone.
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Fig. 10 Relation between the crack Fig. 11 Relation between the crack
length and the plastic zone size; length and the plastic zone size;
transition from brittle mode to transitional mode - unstable crack
ductile mode. extension.
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Fig. 12 Maximum crack length as a function of the stress ratio for
indicated ductilities; circles are the result of model experiments.
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Fig. 13 Brittle-ductile diagram. Fig. 14 Variation of compressive
strength with confining pressure
(From Mogi[8]).
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