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EFFECT OF CRACK CURVING ON STRESS INTENSITY FACTOR/ENERGY RELEASE
RATE IN THREE-POINT BEND SPECIMENS

*
B.L. Karihaloo

The influence of crack curving/kinking on the stress
intensity factor and energy release rate at the tip
of a notch in three-point bending is studied.
Expressions for these fracture parameters are devel-
oped on the basis of the true state of stress ahead
of the notch tip. The notch front which may kink/
curve under the influence of the shear stress com-
ponent is assumed to propagate along the direction
of vanishing minor stress intensity factor. It is
shown that the resulting expressions for the stress
intensity factor and energy release rate are similar
to ASTM formulae. However the fracture toughness
predicted by these expressions is consistently
higher than that computed from the ASTM formulae.

INTRODUCTION

The formulae for the determination of fracture toughness from
three-point bend specimens proposed by Brown and Srawley (1),
Srawley and Gross (2), and Srawley (3) and adopted by ASTM imply
that the state of stress immediately ahead of the pre-crack front
is one of pure tension, so that the crack front will not deviate
from its initial (straight) path. Any small deviation from the
straight path is unlikely to make a substantial difference to the
resulting fracture toughness and may therefore be ignored. There
are many instances, however, where the deviation may not be insig-
nificant. This is likely to be so not only in the case of hetro-
geneous materials such as concrete, reinforced ceramics (see, e.g.
Nallathambi et al (4), (5)) but also in homogeneous materials
because of a complex state of stress immediately ahead of the
pre-crack front.

The true stress state at the tip of a pre-crack in a three-
point bend specimen consists of not only a tensile stress normal to
the crack faces but also of a significant (tensile) stress in the

* School of Civil and Mining Engineering, Sydney University,
N.S.W. 2006, Australia.

1,423



FRACTURECONTROLOFENGWEENNGSTRUCTURES—ECFG

plane of the crack and of a shear stress. In fact elastic finite
element calculations show that the in-plane normal and shear
stresses can be comparable in magnitude with the normal stress. It
is now generally accepted (see, e.g. Karihaloo et al (6), Cotterell
and Rice (7), Karihaloo et al (8), Hayashi and Nemat-Nasser ),
and Karihaloo (10) that the in-plane normal stress component con-
trols the stability of the crack growth (a tensile in-plane stress
enhances this growth, whereas a compressive in-plane stress retards
it), whilst the shear stress component forces the crack front to
deviate from its straight path, producing a kinked/curved crack
front.

It seems appropriate therefore to modify the ASTM formulae for
three-point bend specimens by making an allowance for the true
stress state ahead of the pre-crack front. This has been achieved
in the present work. Similar modification may be possible for
compact-tension specimens, but this is not pursued here.

The modification has been accomplished by calculating the
stress intensity factor and energy release rate not at the tip of
the straight crack itself but at the tip of an infinitesimally
small kink that is likely to form at the crack front in presence
of the complex state of stress. The kink is assumed to form in
the direction along which the minor stress intensity factor van-
ishes. This criterion is, of course, almost equivalent to the
maximum energy release rate criterion (6, 9). The resulting com-
pliance functions are shown to depend explicitly on both the
notch/depth and the span/depth ratios. The compliance functions
proposed here, however, Tetain the simplicity of the functions in
the original ASTM formulae.

STRESS INTENSITY FACTOR AND ENERGY RELEASE RATE

In order to calculate the stress intensity factors and the energy
release rate at the tip of a crack, it is argued that the true
state of stress ahead of it must be considered and an allowance
must be made for the possible formation of a kink. Let k3 and kp
denote the stress intensity factors at the tip of an existing
plane crack and let G denote the energy release rate. Furthermore,
let k; (i=1,2) and G denote the corresponding non-dimensional
fracture parameters, such that

* * 2
ki = ki/(oo/a), G = G/(co a/E), 9]

where o, = GBV(bdZ) is the nominal flexural stress in an unnotched
three-point bend specimen and a is the initial notch depth. Here,
M = PL/4 is the maximum bending moment due to the mid-span load P,
and b, 4 and L are, respectively, the width, depth and span of the
beam. Then taking into account oxx and o besides oyy and allow-
ing for the possible deviation of the existing crack front from its
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plane, it may be shown (7-11) that the non-dimensional stress
intensity factors and energy release rate at the tip of an incipi-
ent, infinitesimally small kink are given by

* * *

Kp =K X * Ky Ky, (2)

* * *

K1 = Ky Ky * Kyp Kys (3)

¢ =G, K2+G. K K +06,, k2 )
11 K17 Gp Ky Ry + Gy KT

The coefficients K,z and G,g (a,8 = 1,2) depend on the in-plane
stress and the kink angle 6 (9). The above expressions are
strictly speaking applicable to semi-infinite bodies and are there-
fore only a reasonable approximation to the finite beam specimens
under consideration.

& e expressions (2) - (4) relate the stress intensity factors
KT, KI1 and the energy release rate G* at the tip of the incipient
kink to the stress intensity factors kf and k2 at the tip of the
pre-existing notch. For small values of the kink angle 6 it is
possible to express K,g and Gyg explicitly in terms of the kink
angle and the in-plane normal stress oy, (9, 19). It has also
been shown (9) that Irwin's formula relating G~ to K and K7p
through G~ = K}2 + KIZ is strictly true for all values of the kink
angle o, proviéed tha% the stress intensity factors in the formula
are taken to be those at the tip of an infinitesimally small kink;
the formula clearly applies after kinking has taken place.

It now generally accepted (see e.g. (6-10), and
Bilby and Cardew (11), Kalthoff (12), and Lo (13)) that the
kink is likely to form in the direction along which the minor
stress intensity factor vanishes. This criterion is usually
referred to as the criterion of local symmetry (KIT = 0). It is
known (6, 9) to be almost equivalent to the maximum energy release
rate criterion according to which the crack front kinks/curves in
the direction along which 3G /36 = 0. It is also likely that both
these criteria are, in turn, equivalent to the maximum stress
criterion (6) and to the minimum strain energy density criterion
(7). However, this aspect of the problem needs further
Consideration which will not be attempted here.

From the computational point of view the criterion of local
symmetry is the more useful in that it is easy to determine the
kink angle. It is worth pointing out that the relationship between
KT and G” is not the simple quadratic one assumed in the ASTM
formulation

K/ (o, /a) = Y(a38), G = KI/E, )
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where the compliance function Y(a;B) depends linearly on g = L/d
but is a polynomial in o = a/d (3) (for g = 4+0.01)

Y(a38) = [1.99-(1(1—(1)(2.15—3.93u+2.7&2)]/[(1+20L) (1-u)7] (6)

FINITE ELEMENT IMPLEMENTATION

A plane stress finite element program using eight-noded isopara-
metric elements (see, e.g. Owen and Hinton (14), Barsoum (15),
Mazumdar and Murthy (16)) was used to analyse the three-point
notched beam specimen. A study of mesh sizes was undertaken in
order to arrive at an optimum mesh (Fig. 1). The depth of the
beam was assumed to be constant (100 mm) and the span was varied
to achieve the desired L/d ratio. Likewise, the boundary condi-
tions along the line of symmetry (x-axis) were varied to achieve
the desired a/d ratio. In all, the span/depth ratio was varied
between 2 and 10, and the notch/depth ratio was varied between
0.1 and 0.7. The midspan load was chosen to be equal to 10 N so
that results could be easily factored for other load values. The
mesh gradation from fine near the notch tip to coarse near the
supports was achieved by using a 'master-slave' technique, such
that the size of the element near the notch tip was always equal
to 1.00 x 1.25 mm (Fig. 1).

Details of the iterative procedure for calculating the stress
intensity factor Kf (expression 2) and the energy release rate G

(gxpression 4) at the tip of an incipient kink (which forms along
Ky7 = 0) will be found in Nallathambi and Karihaloo a7.

It is customary in a finite element calculation of stress
intensity factors to vary r/a for a given geometry in order to
extrapolate to r/a - O. This requires a lot of computational
effort. In the procedure outlined above, an alternative scaling
technique proposed by Kisu et al (18) was used elminating the need
for varying r/a. According to this technique the stress intensity
factor for a beam of given geometry is obtained by scaling with
respect to a standard geometry as follows. First, it is noted
that the near field stress oyy at (r,0) may be expressed in terms
of the nominal flexural stress o, whereupon

/f—;——_-—~_“_—
L. (kg Y a/(211)) = o (7

1t follows from expression (7) that the ratio on the left hand
side is a constant for all a/d and L/d, provided o, is the same
for all*geometries. Now a standard three-point bend problem (for
which k] is exactly known) is solved by the finite elepent pro-
granme and r chosen in such a way that the resulting kj is equal
fo the known exact value. Then for any other geometry with the
same b, d, L and o, but with a different notch depth a the

stress intensity factor kj is obtained by equating the left hand
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side of equation (7) to that of the standard problem, distinguished
by subscript 's', whereupon

% £ O p ra
k, =k -——Xzf— == (8)
1 1s (cyy R ra

This scaling procedure is not limited to three-point bend
problems. In fact, the accuracy of the procedure was tested on a
centre-cracked tension (CCT) specimen for which exact results are
available in the paper by Isida (19). The standard problem was
the one with a/d = 0.5. The accuracy of the present grocedure may
be judged from Figure 2 which compares the computed kI for bend
specimens with that given by ASTM formula (1). 1

IMPROVED COMPLIANCE FUNCTIONS

The computer algorithm and scaling procedure outlined above were
used on three-point bend specimens with varying L/d (between 2 and
10) and a/d (between 0.1 and 0.7). The standard problem had L/d
=4 and a/d = 0.5 (2). A yegression analysis was performed on the
stress intensity factors Kj (note that K 1 * 0) and energy release
rates G” so computed, giving (error < 1%}

KI = I_(I/(OO va) = Yl(a) Yz(ot,S), 9

*

G

G/ (0%a/E) = 7, (a) Z,(a,8), (10)
where o_= a/d, 8 = L/d, and an overbar has been used to distinguish
K1 and G from the corresponding ASTM parameters K; and G
(expression 5).

The various compliance functions appearing in (9) and (10)
are defined as follows:

2 3 4
V(@) = A+ A+ At + A+ Al (11)
Z(@) = C,+ Cia+ Coo? + Coo + Coa? (12)
1 0 1 2 3 4= 2
Y,(a,8) = B, + BB + B.g% + B.g> + B ap + B_ag> (13)
2° 0 1 2 3 4 5 2
Z,(a,8) = Dy +D,8 + Dg% + D.g5 + D ap + Dag?.  (14)
2% g =i 2 3 4 5%F -
The regression coefficients Aj, Ci(i=0, 1, ..., 4) and Bj’ [5

(j=0, 1, ..., 5) are listed in Table 1.
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TABLE 1 - Regression Coefficients Ay, GCj D; (i=0, , 4
j = 0

, Bi, D (i=0, ...
G "0, ..., 5) in Compliance finttioks.

i/j A o B; D;
0 3.6460 1.5640  0.4607 1.9560
1 -6.7890 -8.3200  0.0484 0.3982
2 39.2400 52.9500  -0.0063 -0.0553
3 -76.8200 -124.9000 0.0003 0.0027
4 74.3300 122.9000 -0.0059 0.0202
5 = = 0.0003 -0.0055

1t is interesting to note that the form of compliance func-
tion Yq(a) appearing in (9) is identical to that of Y(a;R) appear-
ing in the ASTM formula (Reference (1)) and is very similar to the
modified Y(a38) (expression (6)) proposed by Srawley (3); the
coefficients are naturally different in each case. It should how-
ever be pointed out that whereas the dependence of K? on L/d is
explicitly indicated here by the compliance function Y7 (a,8), the
ASTM formulae (1-3) predict a linear dependence on L/d. It is
clear from the present analysis that this dependence is non-linear,
especially for small values of L/d.

Figure 3 compares the product of compliance functions
Y1 (o) Yz(a,s) proposed in the present work with the function

Y(o:p) in the ASTM formula (1). It 1S clear that Ky (and G
which is based on the true stress state ahead of an existing

notch in a three-point bend specimen is consistently larger than
the corresponding K (and G) given by the ASTM formulae. The
formulae proposed in this work should give a better estimate of

K; and G, especially for hetrogeneous materials.
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Figure 1 Finite element mesh distribution over one half (a) of the
three point bend specimen (b). Detail of the element ahead of the
notch tip is shown in (c).
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Figure 2 Comparison of normal-
ised stress intensity factor in
pure tension field calculated by
the present finite element pro-
gram with the ASTM formula.
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Figure 3 Comparison of com-
pliance function for stress inten-
sity factor Ky proposed in the
present work with the compliance
function for Kj.
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