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CONTINUUM MECHANICAL FOUNDATION OF CURVED THERMAL CRACK GROWTH IN
ELASTO-PLASTIC MATERIALS

B. Kaempf and K. P. Herrmann*

A thermodynamically based theory has been derived to
describe the thermal crack problem in elasto-plastic
materials. The theory is founded upon Gibb's funda-
mental equation and the general energy balance equa-
tion. The coupling phenomenon between thermal and
mechanical properties is discussed and a special
form of the J-integral which is valid for elasto-
plastic materials is presented. Moreover, a new
approach to the internal energy has been introduced.

INTRODUCTION

The fracture process in solids is a dynamical process in a special
'sense and it depends on many microscopic parameters. The aim of
"this work is to formulate an energy criterion which is capable of
describing the onset, the path and the velocity of cracking. A
first step on this way will be some continuum mechanical conside-
rations which make up the essence of this paper.

We start our representation by studying thermo-elastic materials.
By making use of Gibb's fundamental equation for solids we derive
the thermodynamic functions such as the internal energy, the free
energy and the entropy, respectively. We introduce a new approach
to the internal energy and illustrate the corresponding functions
by some practical examples. We extend our representation to thermo-
elasto-plastic materials and by applying the general energy ba-
lance we formulate a fracture criterion which is valid for elasto-
plastic materials.

* B. Kaempf and K. P. Herrmann are Research Associate and Professor
of Mechanics, respectively, Laboratorium fiir Technische Mechanik,
University of Paderborn, FRG
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THERMO-ELASTIC MATERIALS

We write Gibb's fundamental equation as follows

where the quantities used mean:

0o: initial density of the material
: present temperature

: stress tensor

: strain tensor

: specific entropy

: specific internal energy

m wlmla -

We assume the existence and uniqueness of the following
functions

e=e(e,T) 5 s=s(eT) 3 o=0(e,T) (2)

Much interesting and helpful work has been done in the area of
thermo-elasticity by Miller (1), Mazilu (2), Becker and Blirger
(3) and Bui et al. (4). So the reader should compare the results
of the present paper with those of the authors cited above.
Mainly we agree with (1) and our basic assumptions are in
agreement with this theory.

We substitute the total differential in equation (1) and
obtain

1. 93¢ e 1
ds==1[ dT+(Z| - — o) del 3
TUSE| ST+ (5g| 5520 (3)
and

o=o, ) ea—eTs (4)

which is a corollary of equation (3).

Thereby the term within the parenthesis is the definition of
the free energy f=¢-Ts. From equation (4) it follows that

€ =_1_0-+T
Po —

5
agT (5)

o)lo)
|o|n

T

is valid. By forming the differential of the specific free energy
and together with equation (1) the following relation holds
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Further, the constitutive equations of linear thermoelasticity
are used

_E v _ Ea
%37 (85 T iy ) T T 9% (7)
where the quantities used mean:

E : Young's modulus

v : Poisson's ratio

To: reference temperature

a ¢ linear coefficient of thermal expansion
© : temperature differential (0=T - To)

Thus, by using the new approach to the internal energy

oe | _
?l'e_coJrcle (8)

as well as the relations (5), (6) and (7) it can be shown that the
expression for the internal energy reads as follows

_ 1 Ea 1 5
E"we'+Bg’I:?U Toekk-fcoT-+2 cle (9)

where We is the strain energy density according to

_ E % 2
Ye =2ty (&43%5 Y ooy ki) (10)

From the preceding equations the expressions for the free
energy and the entropy, respectively, can be derived

_y _ 1 Ea _ T,_1 2 T,_
f—We Em@ekk COTan (T—o—) ?Cle +C1TO(T94n(T5) O) (11)

=%.I_2__E°‘\) ekk+co(1+2n (%0))+c1 (O-Tolﬂ (TT;)) (12)

The quantities c, and C] are constants. If c; equals zero, then
Co is the well known specific heat at constant deformation. The
second constant cj gives a better approximation and has a clear
physical meaning which can be shown in the following manner.

Firstly, we restrict our considerations to processes which are
locally adiabatic. With regard to elasto-plastic materials this is
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no disadvantage because the non-stationary heat conduction problem

can be solved as exactly as necessary - see U. Blix (5). Further,
by using the result of a heat energy balance for the adiabatic
case without any sources

1 Eao _ T _ T
- BS'TTZU ek = Con (73)4-c1(e Tokn (To)) (13)

the expressions for the internal and free energy are obtainable
from the equations (9) and (11), respectively, as follows

- D . 0 2.9 ,1.0,42 9
€ = we+coTo[1+T; 5Ln(1+T;)]+c1To[ T; Z(To) +!Ln(1+T0)]
(14)
e o 2.0 ,1.0y 9
U R IS ACRS WS U Pl (r7) +an(1+g )] (15)

Then, from equation (12) the constant Cq for the entropy reads
s=Cq. Now, we give an interpretation of the constant ci and con-
sider a cooling process for a body with free thermal expansion.

The process runs from Tg to T=0 (absolute zero). With equation (9)
and 0=-Ty we write the internal energy as follows

3 Eo? 1
€(-30(.T0,0)=--2‘60—(m)- Tg+—2‘C1Tg (16)

It is admissible to put e(-3aT,,0) equal to zero and from equation
(16) it follows then

Eo?
= 17
cp =3 po(1-20) (17)

By carrying out a second experiment where a body with constant
strain is cooled down to a temperature T=0 the equations (9) and
(17), respectively, lead to

0.0) = 3 _E&f___12 (18)
Q( B ) = ‘Z'po"(]“_Z'\)j 0

Finally, from equation (11) the expression for the free energy is
obtainable. In conclusion it can be stated that the constant cp is
necessary to guarantee the continuity of the thermodynamic function
near the temperature T=0. Moreover, it is obvious that cq is an
additional constant which is necessary for getting a thermodynamic
function with a quadratic temperature dependence. In order to de-
monstrate the behaviour of the thermodynamic functions some typical
processes have been calculated in the figures (1) - (4).
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ELASTO-PLASTIC MATERIALS

Continuum Mechanical Foundation

Firstly, we make a reference to the excellent papers of
Buggisch et al (6) and Lehmann (7). Many assumptions and theorems
used in this paper have been described by these authors in detail.
So we can restrict our representations to some essential equations
which are necessary to formulate the J-integral in a vectorial
notation.

The general energy balance in its local and integral form, re-
spectively, reads

po¢ = ‘PJ"J‘"'K (19)
d .
Lo 6dV = S op.n,dA+ S edy (20)
dtg o B I 3

where the quantities used mean:

[ : stored energy
wj j @ energy flux
k"’ : energy production of internal sources

These energy terms can be subdivided as follows
1

) = é+?(&k W) +v',s+\;,o+v'«8 (21)
K = p kil +R (22)
‘\UJ'= O'iju'i -qj (23)

where the quantities used mean:

ug : displacement

Wg : energy stored in the structure

Wo : surface energy ;

Wg @ energy stored in the structure of the fracture zone
ki : body force

R : heat source

qj : heat flux vector

Wy : dissipated fracture energy

The following considerations are restricted to elasto-plastic
materials with a quasi-static behaviour so that k; = 0, R = 0 and
the change of the kinetic energy equals zero. By using the result
of a heat energy balance it follows from equation (9) for the in-
ternal energy rate
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s » 1 Ea g e 1
£ = Wem oo T2y *4 T T, %, (24)
with wp as the energy dissipation outside of the fracture zone.
Thus, by applying the equations (21) - (24) the energy balance (20)
reads
. Ea ~° . .
afB[(poweéjk - o5ui,k) (7 Teag O% TP oovp) Sk

+°1‘jui,k-cij,kui]dAj =0 (25)
where WI =wp+Wg means the irreversible energy outside of the frac-
ture zone and Wp = Wg +Wg+Wy is the fracture energy. Moreover, the
GauR-Green theorem has Eeen used for the transformation of several
surface integrals. Further, it is required that the surface line 9B
is situated exclusively within the linear-elastic part of the body.
After an integration with respect to time it follows from equation
(25)

Ea _
BJ-B[(Dowe --I?E\_) f@den)éak- OTJU'I ,k]dAJ + é po(wl,k +wB,k) dv=0
(26)
which can be considered as the conservation law for elasto-plastic

material under the assumption that all energy fields have zero
values at the beginning of the process.

Application of the Conservation Law to Fracture Processes

Firstly we should mention the very interesting results of
Gurtin [81, [9] who has given a derivation of the J-integral on a
thermodynamic basis.

Designating the first integral in equation (26) by the quantity
Jg the equation (26) reads as follows

pro (wy i W, 4V = g (27)

It was shown by Kaempf and Herrmann (10) that the so defined Jy-in-
tegral is path—independent 1ike the well-known J-integral origin-
ated by Rice (11). Calling the length of the crack path by a the
equation (27) can be reformulated as follows

Jk=_épo (wI,a+wB,a)a,de (28)

It can be shown that with a = constant the fracture criterion may
be formulated as follows

£.3 BXk

wI,a’*wB,a = k Q2a

(29)
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where Wy 5 and Wg 5 are the increasing irreversible and fracture
energies, respectively, with respect to an increasing fracture path.
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Figure 1 Free energy f, increment of internal energy Au and
temperature difference o for plane state of strain
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Figure 2 Free energy f, increment of internal energy Au and
temperature difference o for plane state of stress
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Figure 4 Ratio u* between the difference of the internal
energies of a clamped and a stress-free body
related to the stress-free state
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