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CURVILINEAR CRACKS IN PLANAR SITUATIONS

M. AMESTOY, J.B. LEBLOND

This paper provides formulae for the geometrical pa-
rameters (branching angle, curvature) of a propaga-
ting crack in the most general planar situation. The
treatment is based on :

i- a calculation of the stress intensity factors at
the tip of a small virtual crack extension of arbi-
trary shape ;

ii- a discussion of propagation criteria, which
concludes that the so-called "principle of local
symmetry" is the only possible one for purely Togi-
cal reasons.

The paper provides also a solution to the problem

of the eventual coincidence of this principle and
the Griffith criterion.

1 - INTRODUCTION

The prediction of crack paths in the most general planar situations
(arbitrary geometry of the body considered and the of initial
crack, arbitrary loading), in the context of LEFM, involves neces-
sarily two aspects:

i - The computation of stress intensity factors and other related
parameters for a given body, a given crack and a given loading.
This step can only be numerical since no explicit formula will
ever give stress intensity factors for arbitrary geometries and
loadings.

ii- The definition of the crack path in the immediate future, by
means of formulae giving geometrical parameters of the crack exten-
sion such as the branching angle (in case of load discontinuity) or
the initial curvature (in case of regular propagation, i.e. conti-
nuously turning tanaent) in terms of the previously computed stress
intensity factors and related parameters. This step is necessarily
analytical for reasons explained below.
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The prediction of crack paths is then conducted by a step-by-step
method.

The aim of the present paper is to provide a complete (i.e. valid
in the most general case) solution to the theoretical problem (ii).
This necessitates :

(ii.a) The calculation of the stress intensity factors at the tip of
a small virtual crack extension of arbitrary shape, in terms of pre-
vious stress intensity factors and related parameters and parameters
characterizing the local geometry of the initial crack and of its
extension. This can only be done analytically and not numerically
since the qeometry of the crack extension is not known a priori.

(ii.b) The formulation of a propagation criterion expressed in terms
of the stress intensity factors at the tip of a virtual extension.
Combination of this criterion and the expressions derived in (i1.a)
yields then formulae for the geometrical parameters of the crack
extension.

Previous calculations of the stress intensity factors at the tip of
a small crack extension were based either on exact analytical me-
thods applicable only for particular geometries and loadings (see
e.q. Wu [1] or Bilby et al. [2]) or on perturbation techniques valid
for nearly straight cracks(see e.g. Cotterell and Rice [3] or Sumi
et al. [4]). The objective of this work being to treat the most ge-
neral case, it is obvious that radically different methods are
needed. The present approach consists in establishing first (section
2) the general form of the successive terms of the expansion of the
stress intensity factors in powers of the crack extension length,
j.e. in making precise on which parameters they depend; this will
be done by general considerations based on scale changes. As will
be seen, most terms have universal expressions, in the sense that
they are given by formulae involving only the parameters charac-
terizing the local aeometry of the crack and its extension and

the initial stress field near the crack tip, valid whatever the
qgeometry of the body under consideration and the prescribed for-
ces or displacements. The various functions appearing in the ex-
pansion are then identified (section 3) by two different techni-
ques: terms describing the expansion of the stress intensity fac-
tors for a straight extension are calculated by studying the spe-
cial case of a straight initial crack in an infinite body submit-
ted to uniform forces at infinity by Muskhelishvili's methods

terms describing the effect of the crack extension curvature are
obtained by modelling the curved extension as a succession of n
straight segments and letting n tend towards infinity.

Propagation criteria are next discussed (section 4). A criterion is
said to verify property (P) if it predicts a zero branching angle
only when the second stress intensity factor just before the even-
tual change of direction is zero. It is shown that any criterion
verifying property (P) must either be identical to the so-called
"principle of local symmetry" (PLS) according to which the second
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stress intensity factor must be zero immediately after the even-
tual change of direction, or be logically inconsistent. This

leads at once to rejection of some criteria [5,6] wich agree with
(P) but differ from the PLS. The case of the more fundamental
Griffith criterion (maximum eneray release rate along the propaga-
tion direction) is next considered; the problem of its eventual
coincidence with the PLS is solved by means of a calculation of the
expansion of the functions connecting the stress intensity factors
just before and just after a change of direction. It is concluded
that the two criteria are definitely different, though extremely
close numerically ; since Griffith's criterion agrees with (P),
this implies that it is logically inconsistent. The PLS appears
thus as the only possible criterion for purely Togical reasons.

It is finally used to derive formulae for the geometrical parame-
ters of the crack extension.

2 - GENERAL FORM OF THE EXPANSION OF THE STRESS INTENSITY FACTORS

We consider (fig. 1) a two-dimensional linear elastic body of arbi-
trary shape containing a curvilinear crack and subjected to pres-
cribed forces or displacements on its boundary. The tangent to the
crack at its tip 0 is denoted Ox, and the local curvature C. We
consider a virtual deviated and curved extension of length s ; the
kink angle is denoted mm, and the distance between a point on the
crack extension and its projection on the deviated Xa?gent at the
point 0 is taken of the form a* s3/2+ L¥ s240(s2)(2). The case
of reqular propagation will be treated gg—a particular case where
m=0 and a* = 0. We want to derive the expansion of the stress in-
tensity factors at the tip of the crack extension
k(s)=(ki(s),ko(s)) in successive powers of s up to the third term
(proportional to s). There would be no fundamental difficulty in
extendina the present approach to higher order terms, but we donot
think it would be very useful since, as will be seen below, the
third term is sufficient to obtain the expression of the curvature
of the crack at any reqular point, and thus to describe not only
any kinks that may occur but the entire propagation.

2.1 - First term of the expansion (nroportional to sl= 1

The first term consists of the stress intensity factors
k* = (k%¥, k%) immediately after the kink. It will be shown that they
depend only on the stress intensity factors k= (ky, kp) Jjust before
the kink and the branching angle mm, and not on other parameters
'such as a*, C, C*,... This means that the relation k*= F(m,k) esta-

(1) This denomination, though widely used, is in fact.imgroper,
since this criterion goes very probably beyond Griffith's
original ideas. It is nevertheless used here for shortness.

(2) Such a form, which implies an infinite curvature at the point
0, is necessary in order to respect the criterion (PLS) ;
see e.g. [3,4] and below.
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blished in [1,2,7,10] in a particular case (straight initial
crack, straight extension, infinite body, uniform forces at infi-
nity) has in fact a universal value.

We consider first the case where the body is a circular disk of
center 0 and radius R, subjected to a force field T={t } ,

t= (orr, ore) on its boundary (r, 6:polar coordinates with respect
to the Ox axis). The stress intensity factors at the tip of the
crack extension of length s can be expressed as :

k(s)=L(m,R,C,a*,C*,s,T) (D)

where L is a linear functional of the stress f131d T, depending on
the geometrical parameters m, R, C, a*, C*, s\*/.

Let a new structure be homothetic to the first one by a factor

A :m, R, C, a*, C*, s become then m, AR, C/XA,a*A/x, C*/X, As. If
it is subjected to the same force field, the stresses are the same
(at homothetic points) ; the stress intensity factors are then
eﬁsily seen to be greater by a factor /A in the new structure :
thus

L(m,AR,C/A,a*AK,C*/X, As,T) =+ L(m,R,C,a*,C*,s,T) (2)

Let L*(m,R,C,a*,C*,.) be the 1imit of the functional
L(m,R,C,a*,C*,s,.) when s is shrunk to zero (this is the functional
that gives k*). Letting s tend towards zero in (2), we obtain a si-
milar "homogeneity" property for L* :

L*(m,AR,C/)\,a*/\/X,C*/)\ ,T) =\/X L*(ng,Caa*ac* sT) (3)

We now come back to the general case (fig. 1). Let T(R,s) be the
force field applied on the boundary of the circular disk of center
0 and radius R when the crack extension length is s and when the
prescribed forces or displacements are applied on the external
boundary. The stress intensity factors k(s) are unaffected if one
eliminates the exterior of the disk of radius R while exerting the
force field T(R,s) on its boundary. Thus, by equ. (1) :

k(s) = L(m,R,C,a*,C*,s, T(R,s)) (4)
In order to take the limit s > 0 in equ. (4), we introduce the fol-
lowing proposition :

Proposition 1 : at a fixed point, the stresses are continuous when
The kink occurs ; this means that when s is shrunk to zero, T(R,s)
tends towards the field force TER; exerted on the boundary of the
disk of radius R before the kink(2).

TT) Other geometrical parameters, such as the derivatives ot the
curvature C, have been omitted for simplicity in the notations
introducing them would Tead to the same result.

(2) But of course after the load discontinuity responsible for the
kink.
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Proof : we consider the structure in two situations : before the
Kink and when the crack extension length is s. In the first situa-
tion the crack is considered as extending up to the same point as
in the second one, the crack extension being closed by suitable
applied forces. If we take the difference between the two problems,
the field force exerted on the boundary of the disk of radius R is
T(R,s) - T(R). In the 1imit s~0, the boundary conditions of this
new problem tend towards zero : indeed the forces or displacements
prescribed on the external boundary in the original problem are
supposed to vary continuously with s (after the load discontinuity),
and the total forces exerted on the lips of the crack extension are
0(+/5) since the forces per unit length are 0(1A/) and must be in-
tegrated over a distance s. Thus the stresses at any point tend
towards zero, which means that S]imo [T(R,s)-T(R)1= 0, QED.

Taking the definition of L* plus this proposition into account,
equ. (4) becomes for s ~ 0 :
k* = lim k(s)=L*(m,R,C,a*,C*, T(R)) (5)
s +0
Thus k* depends only on the stress field before the kink ; this is
the essential property which will ensure the universality of its
expression.

To obtain this expression, we use equ.(3) plus the linearity of L*
with respect to T to rewrite equ.(5) as :

(
k* =+R L*(m,1,RCAR a*,R C*,T(R)) =
L*(m,1,R C,R a*, R C*,WR T(R))

We let now R tend towards zero. Since the force per unit length
exerted on the boundary of the disk of radius R before the kink
is of the form : k, £,(8) k, f,(8)

t(R,6) = - + 0(1) ,

VR VR

where f; and f, are universal vectorial functions,+/R T(R) tends
towards the force field { ki fi(8) + k2 f2(6) } when R is shrunk to
zero. Thus equ.(6) becomes in the 1imit R >~ 0 :

K* = L*[m,l,0,0,0, { k, f,(8)+k, £,(6) H= F(m,k) (7)

(6)

where F is a (vectorial) function depending only on m and k, linear
in k, which is the result announced. The final disappearance of

all curvature parameters in the expression of k* comes from the
fact that the crack and its extension "appear as straight" in the
1imit of infinitely small disks.

Though the validity of equ. (7) had not been established previously
in a fully general case, Cotterell and Rice [3] had proved it for

a nearly straight initial crack with a small branching angle in an
infinite body, and Sumi et al. [4] for a straight initial crack
with a small branching angle in an arbitrary body.
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In [10], the form (7) is 2iven for a straiqht kink on a semi-
infinite crack for any m.

2.2 - Second term of the exmansion (promortional to+/s) :

In contrast to the first term of the expansion, the next ones are
influenced by the (continuous) variation of the prescribed forces

or displacements. We deal however for simplicity with a constant
loading ; extension to variable ones is straightforward. In the
particular case of a proportional Toading, it can be shown that the
final expressions for m, a*, C* are exactly the same as for a cons-
tant loading (though this is not true for the formulae giving k(s)).

The derivation of the second term is based on the same principle as
that of the first one. The functional L is expanded in powers of s:

L(m,R,C,a*,C*,s,.) = i
*(mRoC. ) + 172 (m R, Cha%,C*, ) VS + os) D) (8)
The V5 dependence of the second term of the expansion may seem ar-
bitrary ; in fact, assuming on&y thaE L _can be expanded in some
powers of s (not necessarily sv, sl/ ,sl,...), it can be shown that
the expansion contains no term proportional to %a Ejth 0<acx<l/2;
thus it must have the form given by equ. (8) (L 1/ being possibly

zero). The proof shows in fact that this form is directly dictated
by that of the expansion of the stresses near a crack tip.

Using this equation plus the "homogeneity" property of the functio-
nal L (equ. (221, one obtains a slightly different "homogeneity"
property for L )

L(1/2) (m 2R, C/n,a* AR, C*/0,T) = LA/2) (m R,C 0%, C%, T) (9)

We now introduce a new proposition which refines Proposition 1, and
can be proved using the theory of Bueckner's "weight functions" :

Proposition 2 : at a given point, the stresses are a differentiable
function of the crack extension length. Thus the expansion of T(R,s)
in powers of s has the form :

T(R,s) = T(R) + T (R)s + o(s) (10)
without any Vs-term.

The expansion of k(s) is then easily deduced from equs. (4), (8),
(10) and the linearity of L with respect to T :

k(s) = k* + k(l/z)\ﬁi +0(s) , where :
k(172) 2 [ (1/2) (n R, c,a%,c%, T(R)) (11)

(1) The parametersa* and C* are now omitted in L* ; indeed, since
k* depends only on m and k, which depends on R, C and T but not
on a* and C*, L* is independent of a* and C*.
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Here again it is seen that k(1/2) depends only on the stress field
before the kink, and this will ensure the universality of its ex-

pression. This property is a direct consequence of the absence of

a+/s-term in the expansion of T(R,s).

- Using equ. (9), we rewrite equ. (11) as
K(1/72) _ ((1/2) (4 1 R C R a*,R C*, T(R)) (12)

We will now expand equ. (12) in powers of R. We need for this the

expansion of T(R), i.e. that of t(R,8) :

k, f,(8) . k, f,(8)
vR VR

where T is the non-singular stress before the kink and g a univer-
sal (vectori 1} gunction. Using this equation and expanding the
functional L 2 (my1,R Co/R a*,R C*, . ) in powers of R, one puts
equ. (12) under the form :

K (172) _ L(l/Z)[ m,l,0,0,0,{ klf1(9)+-k2f2(9)}}
+ 12 [w,1,0,0,0, {7 9(o)} |

[ m,1,0,0,0,{k, £,(6) +K, £,0) } | + o(vR)

t(R,8) = + T g(e) + OWR)

4
VR
5 (172)

*
+a" ——
Ja

This equation holds for every R, which means that the right-hand
side is in fact independent of R. Therefore the divergent 1A/R-term
must be zero. In the 1limit R+ 0, one obtains thus :

(172) _
O a1}

+ a* — _[m,l,0,0,0,{kl f(8) +k, fz(e)}]='[' G(m)+a* H(m,k)

where G depends only on m and H only on m and (Tinearly) on k.

Hence k(1/2) has a universal expression Tike k* (though more com-
plex). An expression of this type was found for instance by Sumi
et al. [4] in the particular case of a straight initial crack with
small parameters m, a*, C*. However in this work this expression
appeared as the beginning of an expansion in powers of m, a*, C* ;
equ. (13) shows that remarkably enough, the only powers of a* and
C* which intervene in k(1/2) are 1 and a*.

2.3-Third term of the expansion (proportional to s) §

For space reasons, we give here only the result for the third term.
The derivation is basically the same as those presented in§2.1 and
§2.2,al11 expansions being now carried to a higher order ; however
new complications are encountered : for instance it can be shown
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that due to the curvature of the crack, the third term of the ex-
pansion of the stresses near the (initial) crack tip (proportional
to VR) comprises not only a term [by h1(8) + b2 hzi@)]\/ﬁ as_for a
straight crack, but also a term of the form [kyChy(8)+k, C ho(8)1WR
'(C denoting as above the crack curvature at its (initial) tip).

The result is

k(s)=k*+ K172 54 (1) s+0(s) (14)
where :
k(D= pp 1*m,1,R CR T (RY)
R~+0 } (15)
+I(m,b)+C J(m,k)+a* T K(m) + a*? L(m,k) + C* M(m,k)

In this equation, the first term o{ the right-hand side denotes the
principal part of L*(m,1,R C,VRT 1)(R)) when R tends towards zero,
T.e. its Timit once its divergent part has been substracted ;
T(l)(R) denotes as above the derivative of T(R,s) with respect to

s ; b is the vector (by, by) ;3 and I, J, K, L, M denote (vecto-
rial) functions which depend only on the indicated parameters (I
being linear with respect to b and J, L, M with respect to k).

Like equ. (13), equ. (15) is not the beginning of an expansion in
powers of a* and C* but an exact expression.

The essential difference between the expression of k(1> and those
of k* and k(1/2) is the appearance, in addition to terms depending
on the stress field T(R) before the kink, of a term depending on
T(1)(R) and thus on the stress field after the kink. It can be
shown that this term is non-universal in the sense that its does
not depend only on the parameters describing the local geometry of
the crack and its extension (m, C, a*, C*, ...) but on the whole
geometry of the body under consideration (which means that it must
be calculated for each particular case). More precisely, a more
detailed examination of T )(R) based on the theory of Bueckner's
weight functions shows that this term has the following form (in
matrix notation) :

(1)

PP 1*(m1,R C,vR T(1(R)) = [F(m)] [ATLF(m) 1 [F(m)] k (16)
R >0

where [F(m)] is the 2x2_matrix defining the F function

(ki =Fij(m) kj), [F(m)]T is its transpose, and [A] is a 2x2 matrix
which depends”on the whole geometry of the body and the crack befo-
re the kink, and on which portions of the boundary the prescribed
Forces and displacements are applied, but not on the geometrical
parameters of the crack extension (m,a*,C*) nor on the loading.
Thus even in this term the influences of m and the loading appear
under a universal form (through the [F(m)] matrix and the stress
intensity factors k = (ki1, k2)); the non-universality appears only
in the geometry dependent matrix [A].

(1) In this equation k must of course be considered as a column
vector.
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These results are a confirmation and an extension of those of Sumi
et al., who w?re the first to note [4] the loss of the universality
property in k 1) (in the particular case of a straight initial
crack and small parameters m, a*, C*), and obtained [8] an expres-
sion of the non-universal term accurate to the first order inm
which cofncides with that deduced from (16) (once the F function

is known : see § 3.1 below).

We will now derive another, more interesting, form of equ. (15).
For this we remark that for a straight (a*=0, C*=0) extension

in the direction mm, k reduces to :
(1) _
L ]straight -
m
PP 1*m1,R C,vR TDR))+1 (mib) + C 3 (m,k)
R->0

If we introduce now non-zero curvature parameters a*, C*, this does
not change the first three terms of equ. (15) (for the first one
this results from equ. (16)) but just introduces new terms, so that

1 1
k(1) 2 il )]straight+ a* T K(m)+a*2 L(m,k) +C* M (m,k) (17).
m™m

Equation (17) exhibits a decomposition of k(l) into a term which is
non-universal but independent of a* and C* plus universal terms
whz h depend on these parameters. Despite the non-universality of

[k ]straight’ this equation is interesting in order to derive the

al W?]C* (using the propagation criterion) because [k(lh

value o using propag straight
T m

can be computed numerically in each particular case, the essential
point being that it is independent of C* which is unknown a priori.
The form (%{315 more convenient for practical purposes than (15)
because [k ]straight is easily evaluated by computing the stress

mm

intensity factors at the tip of a small straight extension in the
direction mm, whereas the numerical evaluation of a parameter such
as b is difficult.

3 - IDENTIFICATION OF THE FUNCTIONS F, G, H, K, L, M

3.1- Identification of the functions F and G :

These functions describe the first two terms of the expansion of
k(s) in the case of a straight extension (a*=0, C*=0) (see

equs. (7) and (13)). Owing to their universality property, one can
evaluate them by considering the special case of a straight initial
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crack of length 2¢ placed in an infinite body subjected to uniform

forces at infinity (fig. 2). Following Muskhelishvili's method, we

introduce the conformal transformation Z=w(z) which maps the exte-
rior of the unit circle (variable z) onto the physical domain (va-

riable Z) (fig. 3) ; this transformation is defined by :

w(z) = Reima (z -eio‘)l—m (z- e'iu)lﬂm/ z (18)

where R, o and B are defined by :

a+B 1-m a-8 1+m
L =2R (cos —2—> <cos T) (19)
1+m 1-m
s =4R < sin 91;1§> ( sin QL%Ji) (20)
sin B =m sin o (21)

The stress intensity factors kl(s), kz(s) are then given [7] by :

ky(s)-1 ky(s)=2vT o' (e1B) e TM/2 [ yu(oiB) 171/2 (22)

where ¢ is Muskhelishvili's first complex potential (in the trans-
formed plane), satisfying the integral equation:

o(z)=T Re™* z- (Ir+T")

V4
(23)

1-e2””"J (-2 (- ' T dh
am o Ar+e Byi- e By(a- 2)

In this equation C is the arc shownonfig. 3, going round the point
eiB through the interior of the unit circle, and T and T' are given

by : 2
N, +N, (N, - N;) g2
T=—p— 3 F'—————Q———- (24)

where N; and N, are the principal stresses at infinity and Y the

angle between the initial crack and the first principal direction
(fig. 2). Equation (23) was first obtained by Hussain et al. [91.
It is easy to show from equs. (19 - 21) that :

_\m/2
a= 1(1-2m2)(}+rr2) Vs + 0(s) (25)

therefore, to obtain the expansion of kj(s), ka(s) in powers of s,
it is necessary to obtain that of w'(e1é)in powers of a. This is
achieved by differentiating equ. (23) with respect to z and ex-
panding it up to the first order in a, using the following changes
of variable and function (fig. 4) :

195 @' (2)= £e TP L U(L) +a V(2) +0(0?) ] (26)

One obtains thus :

Z=e
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(27)

\,1\/

e T 21wm —

where the interval of integration goes round the point m through
the half-plane Im(A) > 0.

Identification of the terms of order o = 1 in equ. (27) yields an
integral equation for U :

2iTm U
T 1-e (A2-1) U(x) da
UR) =T +5 fgee [c‘” (A-m) (A- ) i

where U(X) has been replaced by U(A)=U(X), and then the integra-
tion interval [-1, +1] by the semi-circle ct (fig. 4). This equa-
tion is identical to that obtained by Wu [1] by a different ap-
proach. Once the function U is known, k*- 1k* is given by the
equation : >m/2

* . * _ -imTm 1-m
k1'1 kz-ZVTT[, e <m
which results from the expansion of equ. (22) to the zeroth order

ina. References [1] and [7] present numerical calculations of the
"components" Fjj(m) of the F function based on equs. (28) and (29).

U(m) (29)

Identification of terms of order a in equ. (27) yields similarly
an integral equation for V :

PR— _ 2iTm -
O N [ e o
C+

To the best knowledge of the authors, this equation is new. It is
of the type V=Vo+A V, where the integral operator A is the same
as in the equation for U (28). This remarkable property allows for
the resolution of equ. (30) by the same method as for equ. (28)
[7]:V(c) is given for every ¢ € €- C*, by the series

V(g) = Vo(2)+A V (2) +AZ V (2) + ... (31)

the convergence of which is guaranteed by the fact that the opera-
tor A is contracting on the space of functions V analytic on C- ct
and such that 11nl1(c2- 1) V(z) =0, with norm defined by

>
v = SUE | (z2-1) V(g) | (C” =semi-circle |z =1, Im(z)<0).

Once V is known by equ. (31), (1/2 -1 kgl/z is given by the equa-
tion :
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= m -3
k§1/2)_1. kgl/z)zz‘/ffnr7 (}ﬁ%) M ym (32)

which results from equ. (14), the expansion of equ. (22) to the
first order in o, and equ. (25).

Since Vo is proportional to
T'=1/2 [ (N2-N1) cos2Y+1i (N2-N1) sin2Y 1, equ. (32) can be put
for obvious Tlinearity reasons under the form :

1/2 .
ke 6,(m & (m | [ (N -N,) cos 2

= 33)
(1/2) ~ i . (
k2 GQ(m) Gz(m) (N1 N2) sin 2 Y
Since (Ni1-N2) cos2Y is equal to the non-singular stress T at the
tip of the initial crack, the functions G; and G, are precisely the
components of the function G defined by equ. (13). Equ. (13) implies
also that the functions G; and Gy in equ. (33) are zero, though this
does not appear clearly in equs. (30-32).

Equations (31) and_(32) allow for the numerical computation of
functions Gy, G2, Gy, Gy by discretization of the arc C7, following
the same method as in [7]. Functions Gi and G2 are found to be very
small (less than the computational error), as predicted by equ. (13).
The following table shows the results for the functions G; and Gy :

Agle o o 20 30 40 50 60
. 0.048 | 0.187 | 0.402 | 0.668| 0.958| 1.238
’ -0.2734| -0.517 | - 0.704 | - 0.815 - 0.839| - 0.776
Angle (°) 70 80 90 100 10 | 120
o 1.482 | 1.662 | 1.763| 1.77 | 1.70 | 1.54
G, -0.635 |-0.434 |-0.196| 0.05 | 0.28 | 0.48
Angle (°) | 130 120 | 150 | 160 170 | 180
G, 1.31 1.04 | 0.74 | 0.45 | 0.22 | o0
G, 0.61 0.67 | 0.66 | 0.56 | 0.39 | -0

(The values of G; and G, for negative angles are given by the fol-
Towing parity relations : G,(-m) = G,(m), G, (=m) = = G,(m)).
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The zero of the function G, is found to be at mg=97.9°, which is
in excellent agreement with the value given by Bilby and Cardew
[107 (98°). Other authors [12] have provided an approximate calcu-
lation of functions G; and G,, but the exact calculation shows this
approximation to be rather inaccurate.

3.2 - Lemma : Asymptotic form of [gg (s)

]straight ’

Before identifying FHEct1o s H, K, L, M, we need a Temma giving the
asymptotic form of T (s)j straight for s+ 0. This quantity is de-

fined as the derivative of the stress intensity factors with res-
pect to the crack length at the point s if the crack, extended up
to s, is further extended in a straight manner (fig. 5).

If the crack is extended in a straight manner in the direction mm
from the point s=0, the stress intensity factors along this ex-
tens1on have the asymptot1c form (by equs. (14), (13) and (17) with

=0 and C* = 0) :
1)
ks] =k*+ T G(m J§+h( ] s+0(s 34
[ (s) straight (m) L straight (s) (84)
T m
Since this expansion contains a term proportional to«v@,*
dk (o 14 [k(s)]straight— k
a5 (s=0) . im =
stra1ght s >0
(fig. 5) is infinite ; therefore [a— (s) ]straight tends towards in-
finity when s tends towards 0.
To precise the behaviour of [a—-( )] sepaiaht® let us define, for

every extension starting from s = 0 in the initial direction mm :
k(s)=k(s)-T G(m) Vs (35)

On the straight extension in the direction wm, one has by equ.(34) :

k ] = *+[k( ] . s+o(s 36
[ (s) straight straight o) (6]
mm

[dE (s)] being defined in the same way as [dk (s)]
ds straight 9 22 lds stra1ght’
[k(s)] - k*
dk, _ ] - 14 straight ~
equ. (36) implies that [H_( =0) strafaiit ;lpb =
is finite and equal to [k(l)] Therefore :

straight”
™m g

dk _ (1)] s -
[ag-(S)]straight_ [k _straight*'o(l)' By the definition of k(s)
mm
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(equ. (35)), this means that

dk dk
(&) =[] + LE()
straight straight  2V's
T G(m) [ (1)}
= + [k +0(1
2Vs straight o(1)
™
3.3 - Identification of the functions H, K, L, M :

These functions describe the effect of the curvature of the crack
extension on the expansion of the stress intensity factors (see
equs. (13) and (17)). To obtain them, we will model the curved
crack extension as a series ot n stra1ght segments delimited by
nodes0,1, ..., n,of length s/n, calculate the stress intensity
factors at the last node n, and Tet n tend towards infinity (fig.6).
The kink angles oy, ..., ®p-1 at the nodes 1 n-1 are adjusted
in such a way as to reproduce the shape v=a*u /2+C*/2 uz+o(u?)
of the crack extension (fig. 6) :

dv dv
% = du (node p)—HJ (node p-1) =
%a*‘/p—ni-%a* (p-}\ S+C*%+o(s)
The stress intensity factors at the node p+1 (before the kink) are
deduced from those at the node p by equ. (14), which reads with

obvious notations
= kx4 k(172) ﬁ (1) s
-kp+kp n+kp = (39)

k
(higher order tgr‘lgs are disregarded because their contribution in
k(s) =k, is O(s
k¥ is given by equ. (7) =F (ap/m, kp). Since ap=0(vs) and the
egpressmn of k¥ is needed on]y up to tRe term Droportwna] to s,
it is aufﬁmen% to use, in this eauation, the expansion of F to
the 2% order in m cnven e.q. in [12] or below (§ 4.2). One gets
thus using equ. :

(38)

p+1

-1
,_kpllav Vn p2\/_'2
(40
27 *2‘/_;_ p—l !
37 @ n n
p2_kp2 Za ~ ~ n p1\/_+?— Bl 2
(41)

(%-%) Mw/:)
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k(1/2) ‘[;-15 given by equ. (13) with a* =0 :

P
a
kél/z) ‘/%=TPG(—WE> 5,
where T is the non-singular stress at the node p (before the kink).
G,(0) and G,(0) being 03(sse above) and % being given by equ.(38),
this can be written as ?-%;-(\/5 -vp-1) Tp G'(0) %—, disregarding
terms of order 0(53/2) ; thus k(é/2)1[§ is in fact of order o(s).
T_can be replaced by the non-singular stress T*just after the kink
(the error introduced being o(s)), which can be shgwn(by techgiques

analogous to those of section 2) to be equal to T F(m) where F is
some universal function. We get thus :

k;()l/Z) ‘/% =3 WF-VvEI) TFm 6'(0) s (42)

k(1) % is given by equ. (17) with a* = 0 and C* = 0 :

p
k(1)§=[k(1)] _ s
p n p straight n
Qo
p
; (1)]
In the quant1ty{ kp straight ° ap can be replaced by 0 and the

Qo
p
previous succession of segments by the real, regular extension
because the errors introduced tend towards O when n tends towards
infinity ; this means replacing

{k(l)} by {g% (node p)}
P straight - straight
%p
Using the Temma (equ. (37)), we get thus, up to order O(s) :
k(D) s ——l\/‘+_ k(l)] s 43
PN 2vp [ straight (43)
mm

(whichshows that k( ) s 7 is in fact of order Vs).

Using equs. (39 - 43), k p+1,1 and k +1,2 are expressed as linear

g (1) (1)
combinations of kp,l’ kp,Z’ T, rkq ]stra1ght and [k ]Sﬁra1ght
™
which can be put under the matrix form :
(X, 0= (1+ A1 VB4 181 5) 1) (44)

where [Xp] is the 5-dimensional column vector of components kp,l,
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(1)} [ (1)] :
kp,2’ Ts [kl straight ? ,k2 straight and where [Ap] and [BpJ
m™m m™m

are 5x 5 matrices with components given by :

_9a*<‘/’g_ ‘/p—1> o, Mo
n n ? p 2 Vpn >
_3 *<‘/p NEER! ) : 23 _ _Ga(m)
a - 4 — 3 A P — :

P b n n p 2Vpn
1__ 27 a*Z/‘/E- /p-I)2 . Blz=_3£ .
732° U®n n : P 72 :

Béa zmm «/p-+p-1) F(m) G/(0) 3 BlL’=% S-S

o (B 2) e (VT

B2°=3 2 Wh-vRTD) Fm) 6300 5 Beg s

other A” s and B1j s =0.
p p

i

p=1
o
N
1]

(45)

Iteration of equ. (44) yields :
[X,1 = ( 1+[An_1]\/§+ [B,_11s ) < 1+ [A] Vs + [B,1 s> [X,1

n-1
={1+ 2 [AIVS + (26)
p=1

n-1 n-1 -1
> [B]+Z Z (A1 [AT]) s [X;]
p=1 =2 P q

up to order o(s). In addition the stress 1ntens1ty factors at the
node 1 in [X1] can be replaced by kT and k3, since the error intro-
duced tends towards O when n tends towards infinity. Equ. (46) re-
duces the problem to calculating the 1imit of certain sums and pro-
ducts of matrices for n > c. This is a purely technical matter ;
the final result is (skipping mathematical details) :
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kl(s)=k’1‘+§ T Gl(m)-% a* k’é % Vs +
(47)
1 27 3
3 [kg )]straight‘% a* T Gy(m) - g7 a*2 ky-7 C* k’ég s +0(s)
mm
k2(s)=k’2‘+3 T (:‘|2(m)+73I a* k] % Vs +
1 3 27 c* 18
3 [ké )]straight+'8 a* T 6y(m) - 37 3% K3+ k] % s +0(s)

mm

These equations can also be derived by a completely different method
based on the requirement of their "self-consistency" (this means
that the expansions (47 - 48) around the point O must also be va-
1id around points belonging to the regular part of the crack).

This derivation cannot be given here for reasons of space.

In the particular case of a straight initial crack and nearly
straight propagation, Sumi et al. [4] have given expressions of

kl(s), kz(s) accurate to the first order in m, a*, C* which are

compatible with the (fully general) eqns. (47-48), except for the
terms proportional to a* T ; the present results are thought to be
more reliable since they can be derived by two independent methods.

4 - PROPAGATION CRITERIA

4.1 - General considerations :

A criterion giving the direction of crack propagation at a generic
point 0 will be said to satisfy property (P) if (as suggested by
experience) pure mode 1 before the eventual kink is equivalent to
no kinking :

ky=0 &= m=0 (49).

We will show that any self-consistent criterion satisfying (P) must
predict, in the general case where KZ#O, a branching angle mm identi-
cal to that deduced from the PLS[k;(kl,kz,m)=0]. Indeed, as was noted
by Cotterell & Rice [3], initsregular part (after theinitial kink), a
crack propacating according to a criterion veri fying (P) is in pure mode
1:vs >0, mm(s) = 0= kp(s) = 0. Taking the Timit s=»0, we get

k; = 0. Thus application of the criterion after the kink leads to
a“kink angle identical with that predicted by the PLS. But the kink
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angle can also be deduced from direct application of the criterion
at the kink ; self-consistency demands therefore that these two va-
lues of m be identical.

This establishes immediately the inconsistency of some criteria
[5,6] which satisfy (P) but differ from the PLS.

We will now consider the case of the more fundamental Griffith cri-
terion (propagation along the direction mm maximizing

1-v2
6= == (Kj* + k3%))-

4.2 - Comparison of the Griffith criterion and the PLS :

The Griffith criterion satisfies (P) (this results from the detai-
led study of the function G = G(k1 , k2 » m)) ; therefore the pro-
blem is to determine whether it coincides with the PLS or not.

The components of the F function being defined as above by
k¥ = Fij(m) kj’ the kink angle mm predicted by the PLS verifies

kS = Fyp(m) ky+Fy(m) ky =0 (50)
that predicted by the Griffith criterion verifies
aki 8k§
ki = k§ ke 0 (51)

Coincidence of the two criteria requires that (50) and (51) be
verified simultaneously ; then
ak*

1 1 !
—8—m—=F11(m) k1+F12(m) k2=0 (52)

is also verified. Thus coincidence of the two criteria requires

that the linear forms defined by (50) and (52) be simultaneously
zero, i.e. that

Fi,(m)/ Fyp(m) = F;z(m)/ F,,(m) for every m (53)

Numerical calculations of the functions F%- s (see [1,2,7,10] show
that these two ratios are indeed very close together. However they
cannot tell us whether equ. (53) is strictly verified or not ; we
will solve this problem by calculating analytically the exact
expansion of the functions F;j s in powers of m.

Using the series expression of U analogous to (31) :
U=Uy+A Ug+A? Uy + ... (see [7]) it is easy to show that :

* i 1_ m/2 + oo
ki-1 ks= (ﬁ) Z, xnm (54)

n =
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h : . .

Hhere (kg-1i k2)<§ﬂ{;%lnj1e_1“m Xén) (m) if n is even

= 55

i (ke +1 K )<s1’n1r m)n (n) . . (5%)
1 I\ ) X, (m) if n is odd

™

X
n

the Xrgn)' s being functions defined on € - ct by
X(O) () =1

m
x(+ 1)y - [ (%2-1) >T,(n") (A) dx (56).
m z) = . >

ct (A-m)(XA - ¢)

It can then be shown 1nduct1ve1y that the functions X( ) s have
the following explicit expression :

(n)

2n n a' /(m) 1 1\ .
X#”’(a>=pgo o P (- g3 Tog &5 ) if cim

(57),

x(" (m) - T alMm & [ (- )]

a' /(m) — ?—r—1oq———r
pzo q=o0 Pa dmP

where the logarithm function is defined on C - i RY by Tog(p eie

Zn p+1i 6 with - -3271 < 9 <-72‘ , and where the coefficients aég)(m)

) =

and the polynomials Pén) are given by the following induction for-
mulae :

P(go) (X) = S

P V(0= (1) sio G5 By s 75 (X -
(B : 1" Bernoulli number [131) ;
al®m=1 ; other aég)(m)' s =0 (59) 5
ar()2+1)(m) 2(-1 :*11 [(p-l) ﬁ(”)1 m) +
Bl e T m | |
Zalm (m  for  p>2 and g>1
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aggﬂ)(m) =2 Ec()g)(m) for every q (61)
a(()3+1)(m) 2('1qn im gé?é_l(m) for q>1 (62)
2n+ 2 n n .
= 2(-1 -2
aé2+1)(m)=%aér)%a0(m)+r§p Lo STy G,
(63)
r-p i
X ;mr_p [(mz— 1) Pg{l)(—?;l—ﬂ log %;—%)] for p > 2
=(n)
a{™ D (m) = 2(-1)™ 1 é 3’5‘-;(:—) p{M1) (o) (64)

Formulae (54), (55), (57 - 64) allow for the calculation of the ex-
pansionof the Fijls up to an arbitraryordern,, by applying them
with n varying only between 0 and n, (since xn(m) = O(mn) by equ.

(55)) and treating all functions of m as polynomials of suitable
order. One obtains thus at the 6th order, after an elementary but
very lengthy calculation :

_ .. 3m2 , L 2 1lq"% 11976
Fyg =& =g=M +(w —T2—8> m“+(-g-—-7-2—~h1—:%-65 >m6+0(m8)

3 3 5
Fis=- —321 m+<—1%1+¥—6> m3+(- Zﬂ-l%—+§—g—g6> m°+ 0(m7)

4 3 21 1373 5975
F21=—2m-<—3ﬁ+%§> m3+<- —311+—3-0-—31T -mﬂ>m5+0(m7)

St

F,o=1- <4+ig3> m2+(§+%i-m> m“ +

2 L 6
(_ %%-ig—- 11597 , 119 ) n& + 0(md)

which implies that :

Fl 3 3 .5
—F-l—i=- %L(M-i}) m2+(1on-ﬂ%_g-+l3’_z> m* + 0(m6) (65)
Fiz 3 3 S
- S0, (4n-ig—> m2+(107r-£?—g——+§-2-) m* + 0(m®) (66)
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Equs. (65- 66) show that equ. (53) is not verified, and thus that
the Griffith criterion, though numerically very close to the PLS,
does not cofncide with it (1). The reason why the question remained
unsolved up to now is that the expansion of the Fij's was known

only up to the ond order [12] whereas the present results show that
the difference between F;,/F,, and F;,/F,, appears only when the

F..'s are expanded up to the 6th order.

1)
The general reasoning of § 4.1 shows then that the Griffith crite-
rion is not self-consistent and must therefore be dismissed. Though
it is questionable whether this criterion is of a really basic na-
ture, i.e. whether it can be derived rigorously from Griffith's
fundamental hypotheses, its rejection generates a serious distur-
bance in the Griffith theory : indeed, propagation being supposed
to occur when G reaches a critical value Gc’ it is difficult to

admit, from the physical point of view, that propagation occurs in
a certain direction where G = Gc whereas G is greater than GC in a
nearby direction.

4.3 - Prediction of crack path :

The reasoning of § 4.1 shows that the PLS is the only possible cri-
terion for purely logical reasons. This criterion implies that
k2 (s) is O for every s > 0. The successive terms of the expansion

(48) of k2(s) must therefore be equated to 0O, which yields values
of the geometrical parameters of the crack extension,m, a*, C* :

F,q(m) k1+~F22(m) ko =0 (whence m) (67)
TG, (m)
a* - -3 — (68)
k*
1

(1) The possibility of an error in equs. (65 - 66) can be ruled
out for the following reasons :

i- Formulae (54),(55), (57 - 64) cannot be erroneous because the
development of the Fi.'s to the 4th order based on them coinci-
des with that obtained by another independent method ;

ii- The calculation of the expansion of the Fii's to the 6th or-
der based on formulae (54),(55),(57 - 64) has been carried out
both by hand and on a computer, which eliminates any possibili-
ty of an error in the application of these formulae.
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*
cren 2 [ D] _3 A TEm
k: @ straight 7 k: (69)
mm (1) T2 G, (m) 6, (m)
L[],
k* straight k*?
1 e 1

In the case of regular propagation (m=0, a = 0), the curvature
after the point 0(C*) is equal to that before that point (C) and
given by :

dk
cec-- L[ HE] (70)
1 straight
mm=0

: (1)]
where the notation [kz straight has been replaced by

[dk2
ds

mm=20
] since the expansion of the stress intensity factors
straight
mm=0

contains novs term . Equ. (70) may be considered as the general
equation of the crack in its regular part. It is recalled that
dkz]
[Tﬁ?]straight

mm=0
numerically in each particular case, but (and this is the interest
of equ. (70)) depends only on the geometry of the crack before the
point 0.

has no universal expression and must be calculated
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Prescribed forces
or displacements

‘

3/2 p*
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Figure 1 : Curvilinear crack in a two-dimensional body.
Z - plane z- plane
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N,

Straight crack with a
straight extension in
an infinite body.

Figure 2 :

Figure 3 : Geometry of the pro-
blem in the z-plane.
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T - plane

Figure 4 : Geometry of the pro-

blem in the z-plane.

Figure 5 :

dk (s)
ds .
straight

[k(s)]

% straight

Definition of some
quantities.

Figure 6 :

Schematization of the curved crack extension as a
succession of n straight segments.
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