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ABSTRACT

Equilibrium states which exist between the imposed thermal
load and a penny-shaped crack of a given dimension are described
quantitatively for the early (stable) phase of fracture growth.
Three specific types of thermal loading were considered. The strain
field within the non-linear end-zone formed ahead of a quasi-statically
growing crack was represented by Wnuk s model of "final stretch".

Transition to unstable or spontaneous fracture, which follows
the quasi-static crack extension, has been predicted for the three
configurations considered, i.e., (a) prescribed constant heat flux,
(b) given temperature difference across the surface of the crack,
and (c)given constant rate of heat extraction due to the effect
of a steady-state flow of a cooling liquid. The solution of the
latter problem is directly applicable in considerations of stability

of a reservoir in a geothermal power generating system.

475



476 M. P. Wnuk

L. INTRODUCTION

Existence of thermal-stress singularities around the edges of
sharp cracks contained in an elastic medium has been demonstrated by
the numerous researchers. Olesiak and Sneddon (1960) and then Florence
and Goodier (1963) have studied the distributions of thermal stresses
arising in the vicinity of a penny-shaped crack which was either dis-
turbing a uniform heat flow (the second paper) or it was subjected to
a certain heat flux or a temperature distribution defined across the
surface of the penny-shaped crack (the first paper). More recently,
the crack opening displacements and the stress intensity factor due to
thermal "loadings" of various kinds applied directly to the disc-sha-
ped crack surfaces were investigated by Kassir (1969), Barber (1979),
and most recently bySékine and Mura (1979). Similar investigations we-—
re carried out for plane-strain crack disturbing a uniform heat flow
by Sekine (1975). In this paper we shall confine attention to the axi-
s mmetrical problem, and in particular, we choose to investigate the
loading conditions, i. e., either a prescribed heat flux or a tempera-
ture distribution given across the surface of a penny-shaped crack,
which eventually lead to an unstable spontaneous enlargement of the
crack. If the medium containing the crack were perfectly elastic, one
would then deal with the classical Griffith problem involving a tran-
sition from a stationary to a catastrophic defect. The novel aspect
of our studies, described in the following sections, consists in intro-
duction of non-elastic relaxation zones around the initially sharp ed-
ges of the crack, in a fashion analogous to that suggested by Dugdale
for ductile metals. Such modification of the crack profile tends to
beagzplunting of the crack tip, reduces the infinite stress to a fini-
te value and, most importantly, delays the process of transition into
a catastrophic crack propagation. The delay can be explained through
a careful study of the preliminary crack extension which is quasi-sta-
tic and stable up to the point of terminal instability. In imperfectily
elastic solids, like ceramics or rocks, this point of transition of
fracture mode into spontaneous propagation does not coincide the loa-
ding and crack dimension predicted as "ocritical" from the Griffith cri-

terion of energy balance at fracture. Instead, one arrives at two dis-
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tinct curves, see Fig. 1; the lower one representing the initiation of
the crack growth, occurring at a certain threshold load and initial
crack size, while the upper curve represents the locus of terminal in-
stability points at which the propagation of fracture can no longer

be controlled. It should be emphasized, though, that at all the inter-
mediate states, which fall between the initiation and the instability
loci, crack extension is stable and the load remains in equilibrium
with the current crack radius. Load increases monotonically with the
crack dimension and a continuous enhancement of load is necessary in
order to keep the crack going. One may, there-fore, speak of a crack

been "driven" by the external load.

In what follows we shall define the equivalent "load" arising
from the thermal conditions imposed on a penny-shaped crack and will
discuss the stability of such thermally driven crack. The preliminary
crack extension, which is quasi-static, will receive most of the
attention. Finally, the instability criterion will be derived. Stable
phase of crack growth under mechanical loads has received wide
attention. It has been studied in metals by Rice and co-workers
(1978-1979), in ceramics by Gerberich (1979), in polymers by McCartney
(1979), and in both metals and polymers by this author (1972-1980). In
1972, the concept of "final stretch" was proposed, cf. Wnuk (1072), as
a fracture criterion suitable for a description of a quasi-static crack,
extensionAyhich in imperfectly elastic materials almost always precedes
the onset of unstable failure. This model, which originally was
suggested to explain cracking under small scale yielding condition,
was eventually extended by Wnuk (1978, 1979), and Smith (1980) to
incorporate a situation of large scale yielding (or post-yield rupture).
Similar approaches were used for ceramics by Gerberich (1979) and for
linear visco-elastic solids by McCartney (1979). Recently, Wnuk and
Mura (1980) have applied the final stretch model of quasi-static
fracture to a disc-shaped geothermal reservoir contained in a large

mass of dry hot rock (Westerly granite).

2.STABLE PHASE OF CRACK GROWTH

The present study expands some of the ideas of the predesessors,

the fundemental assumption being that of the existence of a non-linear
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zone within an elastic medium adjacent to the crack edge, in which due
to either microcracking (in rocks and ceﬁ@ics) or plastic deformation
(in metals) a significant stress and displacement redistributions take
place. The usual r_i/z singularity in the stresses which open up the
crack is removed and replaced by a constant stress, say Y. The strains
associated with a quasi-static crack become logarithmically singular

at the crack tip and the displacement within the end-zone associated

with a slowly moving crack is of the form

[u,(riye) ] = ug,(c) — A [log (B/xr1) + C] +... (2-1)
r, - O

Here, r, denotes the distance measured from the crack tip, c.is the
crack radius, while A,B, and C are certain functions of the external
load, current crack size and the material properties. Two new material
properties are suggested by an investigation of the stable phase in
crack growth history. These are (a) tearing modulus, say M, and (b)
size of the "process zone", say A, over which the final act of fracture
takes place. Crack is assumed here to move in a sequence of finite
"jumps" or "steps" each step being on the order od A. Quantity A is
regarded here to be a microstructural parameter, invariant to the
amount of crack growth; it is on the same order of magnitude as the
initial COD, at which the blunted crack begins to propagate. For
ductile materials Rice (1968) has shown that the region of intensive
straining ahead of the crack front is indeed on the same order of

magnitude as the initiation COD, say éi.

The basic physical assumption underlying the final stretch
model of early stages of fracture is that the crack progresses in
small but finite steps. The size of each step equals A, which is
identified with the process zone size, and in case of ceramics or
rocks it can be approximated by an average spacing between the
microcracks generated ahead of the dominant crack. The requirement
that the average strain within the process zone prior to collapse of
this zone attains a critical level is equivalent to a condition of a
constant crack opening displacement B (i.e., the "final stretch")
generated at a fixed distance A from the tip of an advancing crack.
Note also that the ratio S/A is a measure of the crack tip opening
angle (CTOA); which has been recognized by many researchers as a

quantity invariant to the crack extension. This observation suggests
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the definition of the tearing modulus M used in the equations given in

the sequel, i.e.,
M = [mE/8Y (1- v?)](8/4) (2-1a)
Both the tearing modulus and the process zone size enter into

the non-linear differential equation governing the crack motion, cf.
Wnuk (1980)

drR _ R et M- - e
ac ~c ' (¢7) L g

(2-2)
R=R (c),d = ¢ (R/c), & = &(A,c)

Symbol R denotes the extent of the end-zone, adjacent to the crack tip
*
within which the stress relaxes to a constant level, Y. The functions

¢ and & can be derived from the expression (2.1) in the following way

©
I

(re/a (1 - v Y] [u; (e)/c]

L]
Il

- 2 =
(vE/4(1 - v*)¥] (8u,(x1,0)/6r1]) (2-3)
For the contained yielding case the following linear relation between
tip(c) and the extent of the
end-zone ahead of the crack front is valid

the crack tip opening displacement u

= - w2 -
R(c) = |mE/4(1 - v3)Y] utip(c) (2-4)
Combining this expression with the definition of the function ¢, i.e.,
top equation in (2.3), we notice first that ¢ = R/c and then we
reduce the differential equation governing slow growth of the penny-

shaped crack (2.2) as follows

dR

T =M- @ (a0 (2-5)

This equation is valid only within the small scale yielding range.
Let us now apply the formulae given above to a penny-shaped crack
opened up by certain thermal loadings, some of which eventually lead
to a catastrophic fracture. In particular, we shall consider three

loading conditions
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(a) Constant heat flux across the surface of the crack, such
that the temperature gradient dB/dz 1is positive, if 1,z and 1} are

the cylindical coordinates.

(b) Constant temperature difference between the crack surface

and the surrounding medium, say 6 = - eo.

(c) Heat flux is a prescribed function of the radial distance
r over the crack surface. The distribution considered here is
applicable in the studies of stability of a geothermal reservoir
subjected to so called "strain controlled" loading system.

All of the conditions described above imply cooling effect present at
the crack surface and hence the tendency of the induced thermal
contraction of the surrounding material to increase the gap between
the opposite surfaces of the initial defect. A situation of this kind
prevails for example in a geothermal reservoir in which the hot mass
of rock is continually cooled through circulation of water within a
disc-shaped vertical crevass. Other applications of practical
importance involving use of non-homogeneous reinforced materials in
severe thermal environments may be pointed out. Note that for the
first two cases considered we deal with a positive K-gradient situation,
while the third case will be shown to reduce to a negative K-gradient
configuration. As we shall show for cases (a) and (b) the derivative
dK/dc>O, which implies a tendency to unstable crack extension. The
state of spontaneous crack propagation, however, is preceded by the
sequence of equilibrium states in which the external load (i.e.,
temperature difference or heat flux) remains in equlibrium with a
crack of a specific size, see Fig. 1. The functional relation

between the loading parameter X and the equilibrium (stable) crack
dimension is a priori unknown and it will be subject to determination.
For an infinite medium surrounding a penny-shaped crack the loading
parameter X is related to the crack radius c through the following

differential equation

dr _ M- - (A\%/2) _
dc cA (2=561

in which both ¢ and ¢ are certain expressions which for the geometrical
configuration considered here can be deduced from the equations given
by Wnuk (1980). The non-linear differential equation (2.6) defines the
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the quasi-statically extending crack, i.e., it defines the curve A=X(c)

shown schematically in Fig.l.

3. NEAR-TIP DISPLACEMENT FIELD FOR A QUASI-STATIC CRACK

The curve labeled "2" in Fig. 2, which represents the
displacement outside the crack circumference, i.e., for r > c, z = 0,
has been drawn according to the solution given for a quasi-static
crack derived from the concept of the final stretch, cf. Wnuk (1980).
Restricting the range of application of these solutions to the small

scale yielding situation we obtain
= - 8cy_ (<. -
[uz(rl,c)]rl - gt = (Y/Peq)wb{R rl[log(rl) ()]} + ... (3-1)

where the constant v is defin-ed by
- — &2 -
Wy = 4Peg (1 v?)/mE (3-2)
equivalent (thermal) load A=(Peq/Y) which remains in equilibrium with

Equation (3.1) suggests two definitions; that of the crack tip opening

uggple) = [4¥ (1 - v?)/7E] R(c) (3=3)

and that of the function &(A,c), i.e.,

®(8,c) = 5 log (8c/B) - (c/2R) (3-4)
Now we can specify the right-hand-side of the governing equations(2.5)
and (2.6). Thus for an enlarging penny-shaped crack we obtain (i) the

apparent fracture toughness

dR (o 1
EC—: =M + —2——R- - 7 lOg (8C/A), R = R(C) (3"5)
and (ii) the equilibrium thermal load

d 2M - 2
E% _ M log(ig{A) + (A*/2) , %= ile) (3-6)
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We shall now discuss the implications, particularly those concerned
with the crack stability, as they follow from the equations (3.5) and
(3.6). Before such discussion can be made mean-ingful we ought to
define the equ-ivalent thermal loads for the three cases considered,
i.e., for (a) constant heat flux, (b) constant temperature, and (c)

a prescribed heat flux across the surface of the crack. In order to be
able to do that we have to derive the stress intensity factors for the
three types of boundary conditions.

Some of the integral curves obtained numerically from eg. (3.6)
are shown inFig.3. It should be observed that while the curves A=1X (c)
drawn for the cases a and b indicate a transition from stable to
unstable fracture propagation (the transition points are marked by
small circles), there is no such feature in the load/crack length curve
obtained for the third type of loading considered here. Omitting some
algebraic details we shall give the appropriate forms defining the

dimensionless thermal loads for the three cases. They are as follows:

(a) For a prescribed heat flux QO across the crack surface,the

loading parameter, A = (1/2)J mc(K/Y) reads
a  _ TE ac Ko _
S 25 e (377

in where o denotes the coefficient of linear thermal expansion of the
solid containing the crack. The terminal instability locus is predicted
from the requirement of a vanishing derivative, d\/dc = 0. It follows
then

c 4 4
£ o_ 1 2 - m_ (c /D)
T T 8 =%P A 4 + 2M (3-8)

m2 (c /A)2
f f
in where symbol m denotes the non-dimensional heat flux,
m = RﬂEaQOAV8Y(1—v8, while the index "f" is added to emphasize the
occurrence of the unstable fracture at the point (cf, mf). The pair
(cf, mf), i.e., the critical crack radius and the critical load, may

be determined from eg. (3.8) in a numerical way.

(b) When the surface of a penny-shaped crack is maintained at
a constant temperature lower that the temperature of the suroounding

medium, say

8 = - Go, 0 <r<cec z=20 (3-9)
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and when the temperature gradient outside the crack is zero across the
symmetry plane, i.e.,

30
92

the nondimensional loading parameter which enters the diferential

=0, r>c¢c, z =20 (3-10)

equation (3.6) assumes the form

b _E a 6g

A S Bl
6Y (1-v)

(3-11)

Temperatures at the crack growth initiation and at the transition point

to a rapid propagation are predicted as follows

K
_ 3m(i-v) I¢ _
(eo)ini - Eo. T, (3-12)
and
Ce 1 . n4(60f)4
Z—- = —8- exp { 5 5 + 2M } (3-13)
n (eof)

Here the constant n is defined by

E o

Y (I {3-14

n =

(c) When the surfaces of the crack are subjected to a liquid
flowing in and out the crack, and if the process occurs at a constant
heat extraction rate, Qeff' the K-factor associated with the stress
field generated around the circumference of such a crack may be shown
to be inversely proportional to the square root of the crack radius,
i.e.

(c) E o Q. ¢f (3-15)

K =g /rek,

Here, kr denotes the thermal conducticity of the rock. The derivative

3 K/dc is, therefore, negative and the crack extension process is
inherently stable, as it is seen in Fig. A . Loading parameter for
this case is related to the surrent ¢rack length and the heat

extraction rate Q (which in turn is a certain function of crack

eff
radius!), in the following way:
E o Q
c _ eff _
M T Tev(i-vyck, (3-16)
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The plot of X~ vs. the current crack radius, shown inFig.q , implies

an uninterrupted equilibrium between the thermal load Qeff and the

crack size. Since the derivative dQeff/dc never becomes negative,

fracture in this case is always stable.
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