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Abstract. We investigate strength, damage accumulation and failure of composite polymer 

materials with a high degree of dispersion filling (a few tens percent by volume). We consider the 

class of quasistatic loading processes with axial tension predominance, namely only one of the 

principal strains is positive (tensile) and its direction remains almost unchanged in the course of 

loading; hydrostatic pressure and temperature can be changed within certain limits. 

On basis of the published experimental data derived under uniaxial uniform tension in various 

barothermal conditions (more than 50 non-stationary loading programmes) we suggest the equation 

system for modelling the mechanical behaviour of specified materials, namely: the deviatoric 

relation of gero-endochronic viscoelasticity, the quasielastic equation for volumetric deformation, 

the kinetic equations for damage and failure parameters, as well as the criterion of failure. The 

model has a hierarchical structure: first, the material functions are determined for active straining in 

the normal barothermal conditions; then, if necessary and if relevant experimental data are available, 

the material functions are determined for unloading and repeated loading, different values of 

hydrostatic pressure and temperature. The model identification procedure is relatively simple: the 

material functions are determined sequentially and each of them contains 1–3 constants. 
The tensorial generalization of this equation system is proposed and the algorithm for numerical 

solving of initial-boundary value problems is described. This algorithm is implemented in ABAQUS 

software complex through the UMAT subroutine. 

We carried out the finite-element analysis of short wide strips with and without holes or cuts in 

constant rate elongation processes. By comparison of simulation results with published experimental 

data it was established the need for taking into account the effect of stress-strain state concentration. 

For this purpose we propose the following generalization of the model: into the equations for 

damage and failure parameters we introduce the material function of the concentration parameter, 

which is the ratio of the definite state variable (namely, the failure parameter in the model without 

taking into account the concentration effect) at a current material point to the mean value of this 

variable in the point neighborhood of the definite radius. We specify the method for approximate 

reduction of initial-boundary value problem for the proposed nonlocal theory to the problem for 

piecewise homogeneous body, composed of a set of material layers, described by local constitutive 

equations. The method was successfully tested in the strength analysis of strips with holes and cuts 

(concentrators of middle and high level, respectively). 

The obtained results show sufficient accuracy of the developed mathematical model – including 

adequate prediction of the moment and the location of a failure initiation. 



Gero-endochronic viscoelastic constitutive model 

In [1], the following equation system was proposed to describe the mechanical behaviour of high-

filled polymer materials (HFPM):  
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Here   and   are the principal true stresses and the logarithmic strains ( 3,2,1 );  S  

and 3/Э   ,  2/1)2/3(  SSu  and 2/1)3/ЭЭ2( u ,  
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deviators, intensities and mean values, respectively; t  is the reduced (internal) time;  



 /  is 

the reduced stresses; 2/1)3/ЭЭ2(  
ue  is the logarithmic strain rate intensity (the overdot denotes a 

time derivative); )(TaT  is the temperature-time shift function; u /  is the parameter of stress 

state form; )(/ M
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damage and failure parameters (  is used only to determine the failure moment )(Ftt  ). In [1], the 

model (1)-(6) was identified and verified on the basis of experimental data [2-4]. 

 

Constitutive equations in tensorial incremental form 
Similar to [5], the equation system (1)-(6) is generalized to the following tensorial incremental form: 
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In this equation, )( tt σ  is the true stress tensor, )( ttt V  is relative (with respect to 

configuration at the moment t ) left stretch tensor, other variables and functions are:  
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where )(tε  is the total strain tensor, )( ttt R  is the relative (with respect to configuration at the 

moment t ) rotation tensor at the moment tt  . 

 

Numerical solution of three-dimensional initial-boundary value problems and comparison to 

experiment 
In [6], the material Jacobian of constitutive equations (7) was obtained as : 
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The components of the material Jacobian (8) correspond to the linear elasticity tensor for a material 

with bulk modulus K
~

 and shear modulus 2/
~~R . 

Calculations of the true stress tensor (7) components and the material Jacobian (8) according to the 

given tensors )(ln ttt V , )( ttt R  and the known scalar and tensorial state variables (at the 

beginning of actual time step) are implemented in the user subroutine UMAT (in the finite element 

package ABAQUS). Also, the state variables )2/( tteu  , )( tt  , )( tt  , )( tt  , 

)()( ttn Э  (at the end of actual time step) in this subroutine are calculated. Some examples of the 

strength analysis with use ABAQUS and the described UMAT are presented below. 

In [7], the experimental data in constant cross-head rate tension processes of short wide strips (made 

of HFPM) with and without holes or cuts were published. We carried out the finite-element analysis 

of these processes in accordance with the model (7), (3), (4). “Load – global strain” dependence and 

failure moment for strips without holes and cuts is modelled quite adequate. But theoretical failure 

moment for strips with a hole or cut is much less then in fact. Therefore the model needs a 

generalization. 

 

 



 

Method to take into account the effect of strain concentration 

For this purpose, we propose to replace the material constant 0b  (in the kinetic equations (3) and (4) 

for damage and failure parameters) by the material function 0)( bpc , where cp  is the parameter 

describing the strain concentration. Then the equations for   and   obtain the following form: 
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Let us denote as 0  the parameter calculated in formal accordance with the equations (4): 

 

 












1 if  ,0

 1 if  , ),,(/ 00
Tegbe

dt

d uu
,   0)0(0        (11) 

 

The field 0  is used to define the parameter cp : 
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i.e. ),( xtpc  is the ratio of the local (at the material point x ) value of 0  to the mean value of 0  in 

the cR -neighbourhood (of this point x ); the time t  is a parameter in this definition. In the case of 

uniform strain process, it is evidently 1),( xtpc , therefore 1)1(  . The parameters 0  (11) and 

  (10) coincide, if 1)(  cp . 

The solving of initial-boundary value problem using the model (7), (9)-(12) is carried out by two 

phases. First, the preliminary numerical strength analysis of the body is performed with the 

assumption 1)(  cp , i.e. using the model (7), (3), (4); this analysis ends at some moment )(F

Att  , 

when at some point A  of the considered body V  the parameter 0  reaches 1 for the first time. 

Then the “hand-made” preparation for the basic strength analysis is followed. Using the obtained 

field ),( )(

0 x
F

At , the domains VV i )(  with 1.1cp  (for 10% level of error tolerance) are 

determined. It is supposed that in the rest of V  the strain concentration is insignificant (if 

]1.1 ;1(cp  ) or does not affect the material behaviour (if ]1 ;0[cp  ). In each domain )(iV  the point 

)(iA  with maximal value of the parameter cp  is determined. The values of cp  at a several points in 

a several directions starting from the point )(iA  are calculated using ABAQUS resource. These data 

make it possible to build the isolines and then the isosurfaces with const)( ))((  ji

cc pp x , 

)(,...,1 ,0 iNj  , where )]( [1.1; )())(( i

c

ji

c App  , 1.1)0)(( i

cp , )( )())(( )( i

c

Ni

c App
i

 .  Thus, each domain 
)(iV  is divided into the layers ))(( jiV , )(,...,1 iNj  . Within ))(( jiV  it is supposed that 



const)( ))((  ji

cc pp x , therefore )()( ))(( ji

cc pp   in the equations (9), (10). That enables to specify 

all mechanical properties in each layer (“partition” in the ABAQUS terminology) ))(( jiV . 

The final strength analysis is executed for the piecewise homogeneous body V , composed of the 

material layers ))(( jiV  and the rest of V , where it is supposed 1)(  cp . This analysis is in essence 

the approximate solution of original initial-boundary value problem for the nonlocal model (7), (9)-

(12), in which the material properties at a current material point depend not only on strain history at 

this point but also on values of 0  in the point neighbourhood of the definite radius cR . 

The material function )( cp  and the material constant cR  are determined on the basis of 

experimental data at the moment of local failure of specimens in which a different strain 

concentration levels are realized. Such tests are included in the list of basic tests used for 

identification of the model (7), (9)-(12). The values of cR  and )( cp  are chosen under condition 

that the moment of local failure in the initial-boundary value problem solution corresponds to the 

test. The identified cR  and )( cp , and also the values of )(iN , ))(( ji

cp , suitable for a different strain 

concentration levels, are used for the strength analysis of other bodies made of this material. 

Now we demonstrate some results of the strength analysis of the tests [7].  Owing to their symmetry 

it is reasonable to consider a quarter of each strip. Fig. 1 concerns a strip 25.4 mm long with a 

central hole 12.7 mm diameter and shows location and configuration of the layers ))(1( jV  composing 

the only domain )1(V  wherein a significant strain concentration takes place;  at that )1(,...,1 Nj  , 

5)1( N , 15.1)1)(1( cp , after intermediate value )2)(1(

cp  the differences )( ))(1()1)(1( j

c

j

c pp   are accepted 

the same for all 1,...,2 )1(  Nj , and in the end 5.1)( )1())(1( )1(

 App c

N

c .  Fig. 2 is the same for a 

strip with a central cut if the cut tip is modelled by the rounding with radius 25.0r  mm (this value 

of r  is the upper bound estimate of the size of filler particles in the considered material);  at that 

10)1( N , 4.1)1)(1( cp , 0.10)( )1( Apc . The strength analysis for the cases 5.0r , 1 [mm] was 

done also (see [6]). 

 

           
Fig. 1. The layers ))(1( jV  in a strip with a hole.       Fig. 2. The layers ))(1( jV  in a strip with a cut. 



 

The value 5cR  mm was chosen. The function )( cp  was approximated in the following form: 
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n
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where )()( xxHxM  , )(xH  is the Heaviside function. The material constants 6.1ca , 685.0cn  

were determined under condition that the theoretical value of “global strain” at the moment of local 

failure corresponds to the experimental value for strip with a hole and strip with a cut (approximate 

0.1 и 0.06 respectively, as it was measured in [7] ).  For more details of the determination of cR , 

)( cp , )(iN , ))(( ji

cp  see [6]. 

Fig. 3 shows some results of the strength analysis using the model (7), (9)-(12) with the function 

)( cp  (13) and the specified ca , cn , cR , )1(N , ))(1( j

cp . The theoretical lines with the first symbol 0, 

1, 2 concern strips without a defect, with a hole, with a cut, respectively. The second symbol c 

indicates the solution with taking into account the effect of strain concentration (using the model (7), 

(9)-(12)), in contrast to the using the model (7), (3), (4) solution, which is indicated by second 

symbol n.  The oblique cross on each theoretical line indicates the start of a local failure (the 

parameter   reaches 1 for the first time). Global stress )(t  is defined as )0(/)( minStF , where 

)(tF  is a current value of applied tensile load, )0(minS  is the initial area of the minimal cross-

section of specimen. Global strain E  is 1)0(/)( LtL , where )(tL  is a current value of the 

specimen length. Experimental data [7] are marked by square, round, triangular symbols for strips 

without a defect, with a hole, with a cut, respectively. In all tests presented in fig. 3, the strips were 

identical except a defect, the global strain rate E  was the same (0.1 min
-1

).  Fig. 3 demonstrates a 

sufficiently correct simulation of strength and failure beginning in these significant model tasks. In 

[6], the strength analysis for the rest of the tests [7] (defect-free strips of different cross-section 

under straining with different values of E ) was done also. 

 

 
Fig. 3. “Global stress – global strain” dependencies for strips 

without a defect, with a hole, with a cut. 

 



 

Summary  

The problem of the constitutive model for the high-filled polymer materials under predominant axial 

tension (including the barothermal effects) was considered. The complete mechanical and 

mathematical apparatus for the strength analysis was developed, namely: 

1) constitutive equation system (with the failure criterion) including nonlocal effects of strain 

concentration; 

2) practicable procedure (with the list of basic tests) for model identification and results of model 

verification in extensive set of relevant experimental data; 

3) user subroutine for material properties modelling in the finite element package for numerical 

solving of initial-boundary value problems; 

4) adaptation of standard numerical stress analysis procedure to the case of nonlocal model of 

damage accumulation and failure. 
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