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Abstract. A sensitivity analysis is carried out modelling the staircase method to determine the 

fatigue limit of a material. Using the statistical method of maximum likelihood and assuming a 

normal distribution for the fatigue limit, the mean and standard deviation are estimated. The effect 

of initial load, the number of experiments and the load step are analyzed, as well as the resulting 

error obtained by a numerical simulation procedure. It is concluded that 30 tests is probably too 

short for most applications because the expected error is 30% of the population standard deviation in 

the best possible scenario (whenever the step size actually matches the scatter of the population). On 

the other hand, more than 300 tests are not worthy, because the obtained precision is not appreciably 

increased. The best range for the step is between 0.2 and 1.5 times the standard deviation of the 

population. In any case, al least two load levels with a mixture of runouts and failures must turned 

out. 

 

Introduction  
For most nonferrous metals such as aluminum, copper and magnesium, S-N curves gradually drop 

off and failure will occur eventually if units are tested or are in service long enough. Fatigue data on 

ferrous and titanium alloys indicate that experimental units tested below a particular stress level are 

unlikely to fail. The S-N curve for these materials exhibits a strong curvature and an asymptotic 

behavior. This limiting stress level is called the fatigue limit which is defined as the maximum load 

(or stress) that a component may withstand without failure before a specified life (intended to be 

infinite in theory or -more practically- a given number of cycles ranging from 3 million to 10 

million).  

Fatigue limit is of crucial importance for most engineering applications subjected to alternating 

loads: railways, automotive, airplane structures and engines… It is determined by carrying out 

experiments with samples tested to different alternating loads. In last decades various statistical 
methods to evaluate fatigue limit have been developed [1,2]. The usual procedure, described in BS 

ISO 12107:2003 norm [3], is the staircase method whose sensibility is analyzed in this work. One 

alternating load is applied to the test-piece (or component) until a premature failure or runout is 

obtained. If a failure is produced before the specified number of cycles, then the following test-piece 

is tested to by-one-step reduced alternating load. If a runout is obtained the next experiment is run 

with one-step increased load. After a specific number of experiments the results are statistically 

analysed. 

In order to obtain the required results, parameters like first load level, load step and number of tests 

have to be chosen properly. For example, if the first load level is too high (low) and the load step 



very small, the initial data points will likely be a string of failures (runouts). If the load step is too 

big, only two testing load levels will be obtained, producing the bigger one always failures and 

runouts the smaller. Concerning the number of experiments, it is obvious that reliability of 

experiment increases with the number of tests, but the same does the cost.  

In the next section the procedure to analyze the sensitivity of the stair method respect of these three 

parameters is described. The model estimates the mean and the typical deviation of the fatigue limit. 

In any planned fatigue experiment, there is always some amount of scatter in the dada due to a 

variety of random factors. Some of them can be mitigated preparing the specimen carefully; there 

are others like the slight differences in the microstructure which are incontrollable. Since crack 
initiation is a microstructural phenomenon and, in high cycle regime, fatigue life is dominated by the 

crack initiation phase, for statistical design purpose the estimation of the deviation is strictly 

necessary. There are methods that evaluate the mean of fatigue limit by thermography [4, 5, 6], with 

the advantage of testing, theoretically, only one specimen. The disadvantage of these type of 

accelerated methods is the lack of scattering information. It could be useful take the result of one of 

these methods as a first load level.  
 

Simulation procedure  
A normal distribution of the fatigue limit for a given life (10

x
 cycles, where x might be 6 or 7, 

depending on the actual application) will be assumed. Other distributions are possible, but it is 

simpler and very frequent according to the limit central theorem: whenever the result depends on 

many independent variables, the obtained distribution tends to be normal. So, it is the usual case for 

the fatigue limit that depends on the material composition, homogeneity, grain size, defect sizes, 

inclusion sizes, environment, etc. In any case, a very large number of experiments would be required 

to be able to discern among different distribution functions. 

With a generalization purpose, all the variables with be normalized by the population mean value 

and its standard deviation, i.e. normalized variable 
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will be used throughout this paper. Note that, in a simulation procedure, the actual distribution is 

N(0,1) and the computers run the simulated and random experiments. So, the answer is known and 

the results are analysed, and their ability to obtain the right answer examined. 

The degrees of freedom are the total number of experiments, N (as few as possible compatible with 

the required precision and/or safety concerns or needs), the size of the load step Δz (usually in kN or 

MPa) and the initial load or stress z0. A sensitivity analysis is performed on these variables. 

Whether a failure or a runout is simulated depends on the cumulative failure probability for the 

assumed (true) distribution at this load (or stress) level, zi 
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Note that the cumulative probability is uniformly distributed between 0 and 1. Now, a pseudo-

random number (uniformly distributed between 0 and 1) a, is generated and compared with (2). If 

 izFa   failure is assumed, otherwise a runout is anticipated. 

The simulation runs again increasing or decreasing the load by the given load step Δz, until the total 

number of desired experiments, N, are simulated. 



Fig. 1 shows the results of a simulation. It begins at a load level z0 = 2. Starting with large loads 

saves time: it is faster to produce a failure than a runout, so usually a large load level is chosen to 

start with. The load step chosen is Δz = 1. 

 

 

Fig.1. Typical simulation sequence of 30 tests in accordance with the staircase method 

(z0 = 2, Δz = 1). 

 

 

Eventually, a number n of different load levels zi (i = 1, … n) have been tested, each one with a 

different numbers of failures f(i), and runouts r(i). Table 1 summarizes these results for the 

simulation corresponding to Fig. 1. 

 

 

Table 1. Results obtained in the simulation corresponding to Fig. 1. 

Tested load level, z Failures, f Runouts, r 

-1 0 2 

0 2 6 

1 7 6 

2 7 0 

 Total = 16 Total = 14 

 

 

Maximum likelihood method [7, 2] is used to derive the estimated population mean µ, and standard 

deviation, σ. The likelihood for the previous sequence is given by 
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where 
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Most frequently, instead of the likelihood, its logarithm is maximized (note that the logarithm is a 

monotonic function on the argument). In this way, numeric computational problems tend to reduce, 

mostly when the data and exponents in (3) are very large. The new function to optimize is 
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where “log” holds for natural or decimal logarithms. In this paper natural logarithms are used. 

Fig. 2 shows the summary of the simulation failure frequencies as a function of the applied loads 

(black circles) and their confidence interval (corresponding to a binomial distribution) as gray 

segments. The estimated population distribution in thick red line passes as close as possible to the 

experimentally observed frequencies (maximizes its likelihood). In thin dashed line the true 

population used for the simulation is also shown. 
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Fig. 2.  Cumulative distribution function estimated from simulation reported in Fig. 1 in 

thick red line. The true distribution is shown as a thin dashed line. 

 

 

In this particular example the final result overestimates the population mean by a 74% (of the 

standard deviation, our standard units) and the population scatter is slightly underestimated (0.8 vs. 

the actual 1.0). The mean shift might be due to the fact of beginning with large loads. It is clear that 

a better precision is desired and, in a lot of cases, required. 

 

 

Results and discussion  

Effect of the number of tests. The BS ISO 12107 norm [3] states that a minimum of 30 tests should 

be carried out, as it was done in the example shown in Fig. 1 and Fig. 2. If the number of test is 

increased the results shown in Table 2 are obtained. 

 

 



Table 2. Results for simulation with different number of tests (z0 = 2, Δz = 1). 

 N = 30 N = 100 N = 300 N = 1000 

μ 0.74 0.27 0.02 -0.03 

σ 0.80 0.91 0.93 1.06 

 

With 100 tests, the mean value for the population is overestimated by a 27% and the standard 

deviation is underestimated by a 9%. Probably it is the right number of experiments for most 

applications. The results for N = 1000 are not better than those for only N = 300 (errors are in the 

opposite directions and of comparable amounts), but 300 tests is indeed a number too large and the 

campaign expensive. 

Analysis of load (or stress) step. Table 2 shows the evolution of one particular prediction by 

increasing the number of experiments, for a constant and optimized load step (identical to the 

standard deviation of the sampled population, as recommended by BS ISO 12107 norm [3]). Now, 

let us analyze the influence of the load step in the estimated results. 

Fig. 3(a) shows the simulated sequence with a larger load step (twice the recommended), and Fig. 

3(b) the estimated normal distribution.  Again a larger load is chosen to start with and N = 30. 
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(a) (b) 

Fig. 3. Simulation with N = 30, z0 = 2 and Δz = 2. (a) Sequence of tests. (b) Estimated 

normal distribution. 

 

With a very large load step, we only test at three load levels and the results at the extreme loads are 

all runouts and all failures. There is only one load level with a mixture of runouts and failures. This 

fact is the reason of the wrong estimation of the population scatter.  

Fig. 4 shows the huge improvement obtained for N = 100 tests.  

The main difference is because now two load levels with failure frequencies different of 0 or 1 are 

obtained: z = -2 with 1 failure and 27 runouts and z = 0 with 28 failure and 11 runouts. Even when 

the failure frequency observed for the minimum stress range is very close to zero (1/28) but not 

zero. 

Table 3 summarizes the results obtained for different initial loads (+2σ, 0 and -2σ), step sizes and 

number of tests. Light gray cells show when there are two or more significant load levels (those with 

a mixture of failures and runouts). In darker gray when the relative error in mean and standard 

deviation estimated are less than 20%. 
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Fig. 4. Estimated normal distribution for a simulation. (N = 100, z0 = 2 and Δz = 2). 

 

 

 

Table 3. Properties of sequence tests and normal distribution for different 

first loads, load step and number of experiments. 

N 10 30 100 300 1000 N 10 30 100 300 1000 N 10 30 100 300 1000
Δz Δz Δz 

0,10 0,10 0,10

0,15 0,15 0,15

0,20 0,20 0,20

0,25 0,25 0,25

0,50 0,50 0,50

0,75 0,75 0,75

1,00 1,00 1,00

1,25 1,25 1,25

1,50 1,50 1,50

2,00 2,00 2,00

2,50 2,50 2,50

3,00 3,00 3,00

3,50 3,50 3,50

4,00 4,00 4,00

z 0 = 2 z 0 = 0 z 0 = -2

 

 

It is quite clear than without at least two significant load levels the chances to estimate the true 

normal distribution are very poor. It has been checked that more than two significant load levels do 

not improve the estimation in a significant way. It is due to the assumption about the distribution: 

three or more significant load-levels do not define better the normal fit; it might be useful is the kind 

of distribution –any not normal- were under question. 

Observe that, with less than 100 experiments, only three estimations were obtained with errors less 

than 20%.  

 

The lower bound of the fatigue limit 

In above section the mean of fatigue limit has been estimated. For design purpose, a safe load (lower 

bound of fatigue limit) has to be taken. According to Benard [8,9], the load with a failure probability 

of 0,001 is considered as lower bound, i.e. 

Mixture of 
runouts and 
failures 
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Fig. 5 shows the cumulative frequency for the lower bound after analysing 1000 runs each one with 

N = 30, z0 = 1 and Δz = 1. The vertical, black, dashed line represents the true position of the lower 

bound. Note that the median of lower bound estimated for 1000 runs is bigger than the 

solution 0902.3  -which is not conservative in the practice-, and the range of distribution is very big 

(from -6σ to 0). As it could be expected, if the number of tests is increased, the values estimated for 

the lower bound improve (Cfr. Fig. 6).  

 

 

-7 -6 -5 -4 -3 -2 -1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lower bound estimation for a 0.001 failure probability

C
u

m
u

la
ti
v
e

 f
re

c
u

e
n

c
y
 f
o

r 
th

e
 e

s
ti
m

a
ti
o

n

 
Fig. 5. Distribution of lower bound for 1000 runs.  

(N = 30, z0 = 1 and Δz = 1). 
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Fig. 6. Distribution of lower bound as a function of the number of tests.  

(z0 = 1 and Δz = 1). 
 

 



For illustrating purposes, the dashed red line in Fig. 6 represents the true normal distribution used in 

the simulations (in a different ordinate scale, not represented). Note the dispersion of lower bound 

for N < 100 (blue horizontal line between 5% and 95%), and the not conservative bias predicted for 

the median estimation (labelled 50%), if the number of experiments is very small. 

 
Summary 

A statistic model has been conducted to analyse the sensitivity of the staircase method to determine 

the fatigue limit. In particular, from the study of the influence of the number of tests, the initial load 

and the load step, the following conclusions can be drawn: 

The number of 30 tests per campaign is probably too short for most applications because the 

expected error is 30% of the population standard deviation even when the load step actually matches 

the scatter of the population, as the norm recommends. Moreover, the lower bound in this case 

becomes not reliable as it is not conservative. On the other hand, more than 300 tests are not worthy, 

as the obtained precision is not appreciably increased.  

The best range for the load step is between 0.2 and 1.5 times the standard deviation of the 

population. In any case, al least two load levels with a mixture of runouts and failures must be tested 

to get an accurate estimation. In most of other cases standard deviation of the population is grossly 

underestimated. 
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