
Numerical simulation of plasticity and failure of solids with defects 
under dynamic loading 

 

Yuriy Bayandin 1,2 , Nataliya Savelyeva 2,1
 and Oleg Naimark1,2

 

1  Institute of Continuous Media Mechanics, UB RAS, 1, Korolev str., Perm, Russia 

2 Perm State Technical University, 29, Komsomolsky av., Perm, Russia 

 buv@icmm.ru 

 
Keywords: dynamic loading, shock compression, solid with defects, spall failure.  

 

Abstract. The developed statistical model of solid with mesoscopic defects allowed the formulation 

of phenomenological model in terms of two independent variables – the defect density tensor and 

structural scaling parameter and the simulation of shock wave propagation in the linkage with 

structural relaxation phenomena [1-5]. It was established the link of non-linearity of plasticity and 

failure and the kinetics of structural scaling transition  in the metastability area of out-of-equilibrium 

thermodynamic potential of solid with mesodefects with application to the analysis of spall failure. 

The purpose of the present work consists of development of three-dimensional mathematical model 

of solid with defects and the further verification of model. According the decomposition of stress 

and strain tensors on isotropic and deviatoric parts the kinetic equations for respective parts of defect 

density tensor were introduced. The deviatoric part evolution corresponds to mechanisms of plastic 

relaxation and isotropic part evolution corresponds to microcrack growth and failure.  

Developed constitutive equations of solids with mesoscopic defects were implemented into 

commercial numerical codes (Abaqus/Explicit). 

 

Introduction  
Deformation and failure under intensive loading are linking to the defect induced relaxation process 

that has qualitative different scenarios depending on the initial structure and strain rates. Structure 

induced relaxation properties and failure are related to the multiscale dislocation evolution that 

include the stages of new dislocation substructure nucleation and growth in the presence of external 

stress and due to interaction with other dislocation and dislocation substructures (mesodefects). The 

statistical model of  solid with mesodefects [1-7] that is operated with internal variables, the defect 

density tensor, characterizing the mesodefect induced strain and an additional variable – the 

structural-scaling parameter, which reflects the spatial scale evolution in mesodefects ensembles –

the scale of corresponding dislocation substructures and the spacing between them.  

The influence of mesodefects on the relaxation properties and damage-failure transition was 

described in the framework of  statistically based phenomenological approach  that reflects specific 

types of nonlinear behavior of the out-of-equilibrium systems “ solid with mesodefects”  called as 

structural-scaling transition [1]. 

The purpose of this work is the adaptation of mentioned model to the impact loading and the 

following verification of material parameters using the data of plate impact test for the vanadium 

(pull-back velocity measurement after VISAR).  

 

Mathematical statement 
Mathematical statement of moderate shock wave front propagation in sold with defects is analyzed. 

Constitutive modeling follows to results given by the statistical theory of collective behavior of 



defects and for the conditions of the plate impact test is formulated for the component of the strain 

rate 0xx 
 
(others components of the strain tensor equal zero).   

Plasticity mechanisms are linked to the structural variables (defect density tensor and structural 

scaling parameter) and corresponding collective modes that reflect the collective behavior of 

defects.   

Defect density tensor p n s
 

is associated with the defect induced strain in the specific 

volume, where s
 
is microscopic tensor related to the geometrical strain induced by microcrack or 

microshear; n
 
is the microcrack (microshear) density.   Defect evolution is characterized by the 

defect nucleation, defect growth and the motion of defects in the condition of the interactions of 

defects in the presence of structural and applied stresses.  

These mechanisms give the corresponding part in the total strain (or strain rate) that represents 

the visco-elastic plastic flow:   

 
e pp                (1) 

 

where 
e  is the elastic strain rate, p

 
is the geometrical defect induced strain rate,

 
p  is the viscous 

plastic strain rate.  Statistical model allowed the formulation of thermodynamic potential (non-

equilibrium free energy F ) and the definition of the part of the dissipation function related to 

defects: 
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where S  is  the entropy, T is the temperature. 

To follow the Onsager principle the constitutive relations of visco-elastic plastic solid can be 

written as the link of thermodynamic forces and thermodynamic fluxes: 

 

1 2

3 2

4

2

1 3 2

,

,

,

0

0, 1,4

p

p

i

A p

A A A

A i

A
F

A p A
p
F

A

 





 

 

 


  



 


          (3) 

 

where 1 2 3 4, , ,A A A A  are the kinetic coefficients that depend in general case on thermodynamic 

variables p ,   and temperature.   

Using the equations (3)1 and (3)2 , the kinetics of plastic deformation can be determined as  
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where the expression in the bracket has the meaning of the inverse effective viscosity;   
d  is the 

deviatoric part of stress. As it follows from the effective viscosity presentation the visco-plastic 

response of material depends on the current structural state induced by defects and applied stress   
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Taking into account (3)2  and (4) the kinetics for the defect density tensor reads: 
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where two mechanisms responsible for the damage evolution are presented: initiation of defect 

nuclei due to the viscous plastic flow and the defect growth due to the free energy release. Similar 

(5) Eqn. (6) can be written in the form 
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where ( ),p dp   is the characteristic time for the damage evolution. The system of equations for 

plastic strain rate p and thermodynamic variables p ,   can be presented in the unified form 
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Motion equation reads   

 

u               (9) 

 

where   is the tensor of total stress,   is the density, u  is the displacement. 

The total stress represents the sum of deviatoric d  and isotropic o parts: 
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Using the rate version of the Hook low  
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where   is the Lame coefficient, G  is the elasticity modulus,  
1( )I x  is the first invariant  of tensor 

x , e  is the elastic strain. The components o  and d  
for the uni-axial case corresponding to the 

plate impact test read  
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where K  is the bulk modulus. 

Motion equation (9) for the plate impact condition can be represented in the form: 
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where 
V

x


 


, V  is the velocity.  

Taking into account the constitutive equations providing the link of relaxation mechanisms and 

defect induced structural-scaling transitions the system of dimensionless equations can be written: 
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(15) 

 



where p  is the plastic strain, , , ,p      are the kinetic coefficient,   is the non-equilibrium 

free energy, d  is the deviatoric part of stress, o  is  the isotropic part of stress,   is the 

geometrical defect induced strain,   is the time,   is the coordinate, ( )input   is the input stress 

pulse,   is structural-scaling parameter, 






 is the intermediate variable that allowed 

reformulation of equation from the hyperbolic to the parabolic form,    is the total strain, lC  is the 

longitudinal sound speed, h  is the width of plate,   is the Poison coefficient. 

The kinetic coefficients ( , , )i i p s 
  

determine the relaxation properties of materials:  p  is 

the characteristic time of orientation ordering and growth of defects,   is the characteristic time  of  

scaling transition in defects ensemble; s  is the relaxation time  of the stress induced transition. 

 

Numerical results 

The system of equations (15) was solved numerically using finite difference explicit scheme. The 

parameters of model were identified using the original optimization method based on the 

minimization procedure of square deviation of experimental and numerical curves corresponding to 

quasi-static and dynamic tests [8]. Numerical plot for plat impact loading is presented in Fig. 6 in 

the comparison with experimental data [9]. 
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Fig. 1.  Experimental and numerical stress-strain curves for the strain  rates 10

-1 
s

-1 
(dotted curve) 

and 10
3
 s

-1
 (stripped curve): numerical results mark by symbols (10

-1 
s

-1
– 

 
□, 10

3
 s

-1
– ○).  

 

The following values of kinetic coefficients and parameters of model were estimated:  

0.276po   s, 2.22so   s, 296.5o   s, 1.96o  , 0.0228cp  , 0.0009c  .  

Results of numerical simulation of the plate impact test and the comparison of the pull-back 

velocity (symbol ○ for  the modeling) with experimental data (solid line) from the VISAR technique 

[9] are presented in Fig. 2.     

 



 
Fig. 2. Free surface particle velocity of vanadium target with the thickness 5047 mm 

 

Two-wave configuration was found after experiment that corresponds to the stability loss of the 

shock wave and the transition from the elastic to plastic deformation (flow). The modeling of shock 

wave loading of vanadium target was combined with the simulation of damage-failure transition in 

the rarefaction wave and spall failure initiation.   

The damage-failure transition was described as the development of blow-up kinetics of damage 

accumulation. To avoid the numerical problems related to the blow-up damage kinetics the 

following criteria was introduced  

 

cH              (17) 

 

where cH  is the critical value that defines the failure occurring on some characteristic scale related 

to the scale of the blow-up dissipative structure.  Particle velocity profiles are presented in Fig. 3 for 

vanadium targets. The correspondence of numerical results and experimental data allowed the 

conclusion that mentioned criteria can be used for the estimation of spall failure initiation under 

intensive loading.  

 
Fig. 3. Numerical simulation results of spall failure in vanadium 
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The equations (8-11) for three-dimention case were implemented into the comercial FEM code 

(Abaqus/Explicit). Dynamic shear loading of vanadium scecimens was considered. Three-dimention 

numerical simulation results of dynamic shear loading and failure are presented in Fig. 4 for 

different times. Presented results show the acumulations of defects in terms of mention structural 

strain induced by defects  in shear zones and folowing failure according to the estimated 

criteria (17). 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 4. Distribution of structural strain of defects and failure for dynamic shear loading using 

Hopkinson bar tests (numerical results, a – 8 s, b – 16 s, c – 20 s, d – 50 s) 

 

Summary  

Study of the shock wave profiles provides the important information concerning elastic, visco-

plastic properties, the strength of materials subject to the shock wave loading. Comparative analysis 

of experimental and theoretical profiles showed that statistically based model allowed the 

description of relaxation properties and damage-failure transition in the large range of load 

intensities using two internal variables that are responsible for the multiscale evolution of defects. 

Kinetics of these internal variables illustrates the linkage of characteristic stages of defects 

evolution, relaxation ability of materials, damage accumulation stages under the spall failure 

initiation. 



The model constants were identified according to the stress-strain diagrams of dynamic loading 

(Hopkinson bar tests) at different strain rates. Model verification was based on the plate impact 

experiments. Procedure of identification and verification of developed model was carried out for 

wide range of strain rates (quasistatic, dynamic and shock loading) for vanadium [6,7]. In the 

present work numerical results of three-dimensional dynamic experiments of plate impact and pure 

shear experiments are presented. The obtained results correspond to experimental data very 

precisely. 

 

Acknowledgments 
The research was supported by the projects of the Russian Foundation of Basic Research (NN 11-

05-96005, 11-01-96010, 11-01-00712-а and 11-01-96005) and collaborating project with Sarov labs. 

(Russian Nuclear Center, VNIIEF, Sarov). 

 

References  
[1] Naimark O.B. Structural-scaling transition in mesodefect ensembles as mechanism of relaxation 

and failure in shocked and dynamically loaded materials (experimental and theoretical study) // J. 

Phys. IV, France, Vol. 134 (2006), p. 3-8 

[2] Bayandin Yu.V., Naimark O.B., Leont’ev V.A., Permjakov S.L. Experimental and theoretical 

study of universality of plastic wave fronts and structural scaling in shock loaded copper // J. Phys. 

IV, France, Vol. 134 (2006), p. 1015-1021  

[3] Bayandin Yu., Naimark O., Uvarov S., Numerical simulation of spall failure in metals under 

shock compression // AIP Conf. Proc., Vol. 1195 (2009), p. 1093-1096 

[4] Bayandin Yu., Uvarov S. V., Lyapunova E., Naimark O., Numerical simulation and 

experimental investigation of spall failure in metals under shock Compression // Physics of extreme 

states for matter / Eds. V.E. Fortov et al., Chernogolovka (2010), p. 73-75 

[5]  Bayandin Yu.V., Naimark O.B. and Uvarov S.V.  Numerical simulation of spall induced by 

mesodefects in metals under shock loading // Comp. Continuum Mech., Vol. 3 (2010), p. 13-23 

[6] Bayandin Yu.V., Kostina А.A., Naimark O.B. and Panteleev I.A. Modeling of the deformation 

behavior of vanadium under quasistatic loading // Comp. Continuum Mech., Vol. 5 (2012), p. 33-39 

[7] Bayandin Yu.V., Savelieva N.V. and Naimark O.B. Numerical simulation deformation and 

fracture of metals under plane shock // Comp. Continuum Mech. (2012), in press 

[8] Lennon A. PhD Thesis of The Johns Hopkins University (1998) 

[9] Tonks D.L. The DataShop. A Database of Weak-Shock Constitutive Data. – LosAlamos, New 

Mexico (1991) 

 

 


