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Abstract. The energy approach is used to propose a model of brittle fracture of a thin plate (and a 

wedge) under bending by a point indenter, which permits studying some possible mechanisms 

determining the number of sectors into which the plate breaks. Since the energy necessary to form 

new cracks and the total elastic bending energy of the n triangular sectors-beams arising under 

bending vary in opposite directions with variation in both the crack length L and n, it follows that 

the total energy required to form n sectors has a minimum depending on L and n, and it is this 

minimum that determines the number n of the arising sectors. In the simplest scheme, the number of 

developing cracks turns out to be independent of the plate physical-mechanical characteristics, and 

its thickness and varies from 2 to 4 as the wedge opening angle varies from 0 to 2π. An analysis is 

performed and a qualitative interpretation of the obtained results is given. Possible refinements of 

the proposed model in various directions are discussed.  

 

1. Introduction. Statement of the Model. Energy Relations 

When studying the interaction of ice fields with icebreakers, ice-resistant structure footings, and 

other objects and in several other cases (fracture of glass and other brittle materials), there arise 

problems leading to the scheme of fracture of a plate made of a brittle material by a point indenter or 

by a lumped force in which several cracks begin to develop under the indenter and cut out the 

corresponding number of sectors in the plate [1,2], being different in different cases. 

For the theoretical estimate of the number of sectors arising in crack formation in a plate under the 

action of an indenter, we assume that  

(1) The plate is loaded by a point indenter.  

(2) As the plate strength is exhausted, fracture occurs instantaneously with the formation of a 

symmetric system of radial cracks.  

(3) One can neglect the irreversible (nonelastic, thermal, etc.) losses (i.e., the plate behavior is 

quasibrittle) and the possible dynamics (vibrations and waves).  

(4) The main contribution to the energy balance equation is made by the energy of formation of new 

surfaces (cracks) and by the elastic bending energy of the arising sectors. In this case, for 

simplicity, we assume that the strain of the undisturbed (and hence preserving the former 

rigidity) peripheral part of the plate is small and its contribution to the energy balance equation 

can be neglected. Thus, in fact, it becomes an unstrained foundation for the arising sectors, 

which are rigidly fixed to it by their bases.  

(5) The minimum-energy-consuming fracture scheme is realized; i.e., the total energy is minimal in 

this case.  

First, consider the case in which the load is applied at the plate center. Under the assumption that the 

arising sectors are equal to each other, we can write  
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 W = nLh + nU,         (1) 

 

where W = W (n, L) is a function of the total energy expenditure in the crack formation, n is the 

number of arising cracks (and sectors), L is the length of arising cracks, h is the plate thickness, γ is 

the effective surface energy of fracture, and U is the bending energy of each of the arising triangular 

sectors-beams.  

Write out the expression for the elastic bending energy U of one sector 

  

 )2/(2  uU           (2) 

 

where Π is the bending compliance of the sector, u – the indenter vertical displacement (descent).  

 

 
 

Fig. 1 

 

Treating the sector as a cantilever beam triangular in plan (i.e., a cantilever of variable width) 

working in bending (Fig. 1), we write out the expression for its compliance in the form ([3], Table 

18) 
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where Q is the force acting at the end of each beam, L is the length of the lateral surface of the sector 

(equal to the length of the arising cracks), E is the Young modulus, h is the plate thickness, and φ is 

the central angle of the sector.  

In the case of formation of n equal cracks in a solid plate, φ = 2π/n. Taking into account 

this relationship and substituting successively of Eq. 3 in Eq. 2 and then in Eq. 1 we obtain for the 

function of total energy expenditures 
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2. Minimization of the Expression for the Energy Expenditure. The Case of a Solid Plate 

Let minimize the obtained expression for W with respect to the crack length L and their number n. 

We rewrite Eq. 4 as 
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By computing the derivative ∂W/∂L and by equating it with zero, we obtain 
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Now we substitute A, L, and B/L
3 

computed by Eqs. 6, 9 and 8 into Eq. 5 and obtain  
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Since C is independent of n, it is convenient to divide W by πC and consider the inverse function of 

πC/W. In Eq. 10, we pass from the discrete variable n to the continuous variable x by the formulas 

  

 /n  x, n > 2, 0 < x < /2        (12) 

 

and from Eq. 10 we obtain the following expression for the cube of this new function 
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We replace the minimization of the function W(n) by the maximization of the function Ω(x) with 

respect to x. One can readily show that this function has a single maximum at x0  0.84. Since, 

according to Eq. 12, the discrete variable n and the continuous variable x are related as x  π/n, it 

follows that the extreme value of n is one of the two integers nearest to /x0  /0.84  3.74. By 

checking the minimum of the function  
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for n = 3, 4, we obtain 
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3. The Case of a Wedge (n–1 Cracks and n Sectors) 

We assume that the plate has the shape of a wedge with opening angle Φ, 0  Φ  2, and the point 

indenter acts at the vertex of this wedge. Then the appearance of n-1 cracks in this plate corresponds 

to the formation of n sectors with opening angle Φ/n. In problems on an icebreaker in ice fields, the 

case Φ = 2π corresponds to the case of an icebreaker in the mouth of the channel crushed by it ([1], 

p. 72), and Φ = π corresponds to the case of an icebreaker coming over the ice field edge or a slant 

smooth support. Operating similar to paragraph 2, we obtain in this case instead of Eqs. 10, 13 
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and replace the minimization of WΦ(n, Φ) by the maximization of ΩΦ(x, Φ) with respect to x.  

Then, for the complete plane (plate) with half-infinite cut Φ = 2π, Eq. 16 acquires the form  
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for which the relation of the type Eq. 14 remains valid, wΦ(4, 2π) < wΦ(3, 2π). Thus, for Φ = 2π the 

function WΦ(n, 2π) of energy expenditures in crack formation attains its minimum for nmin = 4 as 

well.  

For a plate-half-plane, Φ = π, and Eq. 16 becomes 
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Here the function WΦ(n,π) attains its minimum at nmin = 2.  

Thus, as the opening angle Φ of the loaded wedge decreases, the number n of sectors minimizing the 

total energy expenditures necessary for their formation decreases from n = 4 for Φ = 2π to n = 2 for 

Φ = π. The natural question arises: How does nmin vary as Φ varies from 0 to 2π; in particular, for 

what values of the wedge opening angle Φ does nmin vary from n = 2 to n = 3 (Φ23) and from n = 3 

to n = 4 (Φ34)? To answer this question, it suffices to compute wΦ(n,Φ) for Φ varying from π to 2π 

by Eq. 15 for n = 2,3,4. In Fig. 2, we present the graph of the dependence of ln[wΦ(n,Φ)] on the 

wedge opening angle Φ. The points of intersection of wΦ(2,Φ) with wΦ(3,Φ) and of wΦ(3,Φ) with 

wΦ(4,Φ) give precisely the values of the wedge opening angles Φ at which the number nmin of the 

formed sectors (or cracks) is changed, Φ23 4.43 and Φ34 5.94. The sectors with maximum 

opening angle (near Φ23/2  2.21 rad) are formed for Φ close to Φ23  4.43. 

 

 



 
 

Fig. 2 

 

4. Example 

After the number n of cracks formed in fracture is found, one can use the Eq. 9 to estimate the order 

of the lengths of these cracks L, for example, in the case of a solid plate made of window glass. But 

here we encounter another difficulty. By Eq. 9, the length of the formed cracks is determined by the 

value of the critical deflection u*. In the framework of this model, nothing can be said about u*, 

since we do not specify any local fracture criterion and do not study the stress field distribution. But 

if for some u* the plate is destroyed according to the above model, then in this plate there arise four 

symmetric cracks of length determined by Eq. 9 with n = 4.  

This implies an interesting observation. Suppose that an artificial stress concentrator, a conic cave 

(countersinking) is placed on the lower part of the plate under the indenter. Then different u* are 

realized depending on the dimensions (depth and opening angle) of this cave, and, respectively, 

systems of cracks of different L will be formed.  

In a similar way, in the case of symmetric extension of the strip edges (Fig. 3) by u under the action 

of loads applied on a small part of dimension d > δ (δ is the unknown dimension of the defect in the 

material), we assume that the plate is mechanically isotropic, in strength and in imperfection, and we 

do not precisely know what defects are contained in the plate. But since the crack-like defects 

perpendicular to the load direction are most dangerous, the fracture occurs for different 

displacements u* of the force application points depending on the maximum initial dimension δ of 

such defects. The lengths of the arising cracks L are different and correspond to the energy U 

accumulated at this time. 

  

 

 
 

Fig. 3 

 

To obtain estimates of the length L of the arising cracks by Eq. 9 in the framework of the proposed 

model, it is necessary to introduce some reasonable values of the critical deflection u* and some 

actual values of the glass mechanical characteristics E, h, and γ. The effective surface fracture 

energy γ can be expressed in terms of the crack growth resistance KIC by the Irwin formula 
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where μ is the Poisson ratio. For glass, we set E = 610
10

 N/m
2
, μ = 0.3 ([4], p. 116), and 

KIC = 0.8 kg/mm
3/2

 

= 0.810 N/(10
−3
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 N/m
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([5], p. 620); the typical values of the 

glass thickness h are h  (1  10) mm = (10
-3

  10
-2

) m; for u*, we take several values proportional 

to h by the formula u* = αh, where α = 1; 10
−1

; 10
−2

; 10
−3

 

.  

By substituting γ expressed by Eq. 19 into Eq. 9 and by taking n = 4, we see that for such parameter 

values the lengths of the cracks arising in glass can be of the order of several centimeters already for 

α = 10
-3

. For the thickness h = 410
-3

 m typical of window glass, the relative deflections α = 10
-3

, 

10
-2

 imply the values L  0.1 m and L  0.5 m, respectively, for L. 

The above model can be extended to the case of a circular plate of finite dimensions. In this case the 

dimensionless function of the energy of crack w(n, l), similar to the function Eq. 4, takes the form: 

for a clamped plate 
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for a freely supported plate 
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for a clamped annular plate 
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where this time 
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R* is the radius of the annular plate, ri = Ri/L – dimensionless inner radius of the annular plate, m – 

the parameter that determines the magnitude of the critical plate deflection or elastic energy stored 

in the plate at the crash moment. 

 

5. Discussion of the Obtained Results and Accepted Assumptions 

First, we note that at the first glance it seems rather strange that the obtained “optimal” values of the 

number of sectors (or cracks) are independent (except for the wedge opening angle Φ) of any 

geometrical and physical parameters of the model: the plate thickness, its rigidity, and fracture 

viscosity. To understand this fact, we recall that, for a given wedge (with angle Φ at the vertex), it is 

required to find a system of cracks of number and length such that the energy necessary to create 

such a system (this energy is the sum of the energies of formation of new surfaces and the energy of 

bending of the arising sectors) be minimal over all n and L. This minimization with respect to L 

implies the condition that the energy required to form the cracks is equal to the doubled energy used 

to bend the arising sectors (Eqs. 5, 8) and the “optimal” crack length L is expressed in terms of the 

thickness and the plate physical characteristics by a power law (Eq. 9). As a result, it follows from 

these relations that the total energy W is proportional to the crack formation energy whose 

expression contains all the above parameters only as factors raised to various powers and which then 

disappear in the process of optimization. Since we only take into account the strain of the plate 

central part cut by cracks, the solution does not contain the plate fixation conditions in any way.  

The character of variation in the number of arising sectors n with varying wedge opening angle Φ 

may also be explained qualitatively. The function W of total energy expenditures is the sum of the 

crack formation energy nLhγ and the energy nU of elastic bending of sectors-beams. For small Φ < 

Φ23, the arising sectors are narrow, and their total elastic energy weakly decreases as n increases, 

but the crack formation energy always increases linearly in n. Therefore, the minimum of W is 

realized for the minimum feasible value n = 2 at which the energy is minimal. For large Φ and small 

n, the elastic energy U is very sensitive to variations in n (moreover, as Φ  2π, in the framework of 

the accepted scheme, the value n = 2 is associated with U → ∞). As a result, the minimum point 

moves upwards, first, towards n = 3 for Φ = Φ23 and then towards n = 4 for Φ = Φ34. In this case, 

Un = 2, Φ  2, which conceptually reflects the fact of a sharp increase in the rigidity of the arising 

sectors and hence in the accumulated elastic energy and formally shows that the beam model cannot 

be used.  

As follows from the results in Sec. 4, the computed length of the arising cracks can be comparable 

with the general dimensions of the plate Lp (for example, for typical window glass). This means that, 

on the one hand, there is a natural upper limit for possible values of lengths of the arising cracks, 

and on the other hand, it is necessary to take into account the plate dimensions and the 

corresponding boundary conditions.  

Consider one purely kinematic consequence of the boundedness of possible crack lengths. As the 

crack length L = Lp is attained in the energy balance Eq. 4, the further increase in W in the left-hand 

side can be counterbalanced in the right-hand side for fixed L = Lp only by an increase in n. For a 

small excess over the calculated L > Lp, the energy excess is small and obviously can be radiated as 

elastic vibrations and waves (which is not detected by the proposed model). But, starting from a 

certain moment, the accumulated energy becomes sufficient for the formation of a picture with five 

rather than four symmetric cracks, and then with six, etc. Then, in general, the number n of arising 

cracks is always determined as the integral part of the solution of an equation of the form Eq. 4 with 

respect to n for Lp and given values of W (or u*) and the other quantities contained in it. Thus, for a 

sufficiently small imperfection (high strength) of the plate, which permits accumulating a large 

amount of elastic energy, the finiteness of its dimensions may result in an increase in the number of 

cracks arising in it.  



In the case of nonsymmetrical conditions of the plate support (when the lengths of the arising cracks 

are limited only in several directions), the symmetry of the crack formation picture is generally 

violated.  

For example, consider a plate in the form of a long strip clamped along the long sides. Let us trace 

the evolution of the crack formation picture as the accumulated elastic energy and, respectively, the 

lengths of the arising cracks increase. As long as these lengths are much less than the characteristic 

dimensions of the plate, the picture remains symmetric (for simplicity, we assume that the cracks are 

oriented as in Fig. 4). But for sufficiently large cracks such that L/2
1/2

  b/2 (where b is the plate 

width), the cracks in the symmetric picture cannot grow further outside the plate boundaries. The 

energy expenditure of the original symmetric fracture scheme with n = 4 becomes exhausted. Then, 

we obtain the problem of minimal-power-consuming fracture scheme under the conditions that two 

transverse sectors are bounded in height by the plate half-width, i.e., the problem of minimization of 

W with respect to L and n with constraints in the form of inequalities such as Li,y  b/2. The picture 

begins to distort. If we formally remain in the class of rectilinear solutions-cracks, then we obtain 

solutions-intervals with ends sliding along the long sides of the plate away from the ordinate axis 

(the cracks begin to bend towards the plate axis). Just as above, starting from certain values of W (or 

u*), a symmetric solution with n > 4 may appear, etc.  

 

 
 

Fig. 4 

 

In practice, the arising cracks are obviously curvilinear, and this fact must be taken into account by 

more realistic models of crack formation. 
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