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The results of steel tests for high-cycle fatigue in normal environment serve as a basis for 

designing structures operating under corresponding conditions. The relationship between the 

endurance limits of cylindrical specimens (tubular and solid) in tension-compression, alternating 

bending and torsion is used in design.  

 A substantial contribution to the analysis of endurance in the above-mentioned loading 

modes was made by V.T. Troshchenko. He established the fact that the tension-compression 

endurance limit approximated the cyclic yield stress can be depends on a relatively small allowance 

for plastic strain. In his studies, as demonstrated by Refs. [1] and [2], much attention was paid to 

microplastic strains at the endurance limit. 

 The bending and shear stresses of a solid specimen are non-uniform and match the states of 

most structural components under their operating conditions. Solid specimens subjected to bending 

and torsion represent, in essence, the simplest types of structures. Besides the non-uniformity, the 

endurance limit is perceptibly affected by the asymmetry of loading cycle and stress state.  

Allowance for such asymmetry in regulatory calculations is made based on the tension-

compression test data. These results are generalized to the case of a complex stressed state by using 

the concept of stress intensity. Experiments show, however, that the effect of cycle asymmetry in 

the pure shear case is far less pronounced, than in tension-compression. Therefore, stress intensity 

involvement will not provide sufficiently accurate accounting for the influence of cycle asymmetry 

on the endurance limit. The recent progress of fracture mechanics in investigating fatigue crack 

growth makes it possible to use theoretical models to solve these problems. 

 At present, the analysis of fatigue-induced growth of small cracks whose depth is 

commensurable with the metal grain diameter found a wide range of applications. The approach 

taken in Ref. [3] is applied in this case for evaluating the endurance limits in different loading 

types. 

 It is assumed, that a small crack appears on the specimen surface in the maximum shear 

plane under cycling loading to develop later into a semicircular opening mode crack. Growing 

further in a non-uniform stress field, the crack will take a semi-elliptical shape. 

 Specimens will show unlimited endurance if the semicircular opening mode crack stops 

growing. Radius а0 of this crack is roughly equal to twice the grain diameter and is governed by the 

material structure alone. Its value is independent of the specimen testing conditions. This crack 

model allows applying the methods of fracture mechanics in material strength analyses. 
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 A power law diagram of cyclic deforming employed in the calculations appears as 
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where   and   – stress and total strain ranges, 1 – endurance limit in tension-compression, 
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   – elastic strain at the endurance limit, Е- modulus of elasticity, 6n  – strain-hardening 

exponent of the cyclic strain diagram.  
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experiments, the value of α-1 for steel varies within the limits of 0.2÷0.02, with the lower value 

being commensurable with the plastic strain measurement error. 

 The model under consideration suggests that in the case of unlimited endurance in tension-

compression a specimen develops on its surface a semicircular crack of radius а0, which will not 

grow further. Such a crack is characterized by the effective Stress Intensity Factor (SIF) range 

which is equivalent to the J-integral ( jK EJ ) and is calculated by the following formula of 

Ref. [3] 
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 From Eq. (2), it follows that the effect of crack closing is possible only in the case of elastic 

strain. In subsequent calculations, it will be assumed that 0thu =0.5 in Eq. (2) [3].  

 The effective SIF range, equivalent to the J-integral, can be expressed with regards to Eq. 

(1) as 
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The threshold of crack fatigue growth under tension-compression is conditioned by 

jef thcK K   ,                                                              (4) 

where thcK – critical fatigue threshold (which varies within 2÷4 MPa m  for steel in air). 
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 We shall now determine the relationship between the endurance limits in the symmetrical 

and pulsating axial stress cycles. By equating the right-hand sides of Eq. (3) for the symmetrical 

and pulsating cycles to each other and considering that а0 has the same values in both cases and 

n=6, we arrive at: 
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 If α-1=0,02 at the endurance limit, then 0
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boundary of the ratio between the endurance limits typical for brittle materials. With α-1=0.2, 
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 The endurance limits will be now compared for the cases of uniform (axial tension-

compression) and non-uniform (alternating bending) stressed states. With a bar bent to the point of 

plastic flow, nominal stresses ( n
M

W
  , M – bending moment, W– section modulus) coincide with 

real stresses on its surface. When the outer fibers of the bar develop plastic strain, the nominal 

stresses will exceed the real ones.  

 Estimating the J-integral of a bending-induced small surface crack has found application in a 

method, which introduces a conditional diagram of cyclic deforming at nominal stresses-strains, 

similar to Eq. (1). In this diagram, the yield stress (in this case, 1 ) is higher by a factor of q, with 

q standing for the coefficient of bearing capacity. This coefficient is equal to the ratio between the 

stresses induced by incipient plastic hinge formation and by the onset of plastic flow when a bar of 

ideal plastic material is bent. In the case of a round solid bar q=1.7, while with bending of a bar of 

rectangular cross-section q=1.5. As with tension-compression the J-integral is calculated by Eq. (3), 

where the yield stress is increased q times. Thus, the range of the effective SIF value, equivalent to 

the J-integral with the allowance  for crack opening under nominal elastic strains, will take the 

following form for alternating bending: 
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By equating the right-hand sides of Equations (3) and (6), we obtain an equation for calculating the 

ratio between the endurance limits in alternating bending and tension-compression: 



 4 

1

1

2
10

1

51 2
10

8 1,17

8 1,17

b

th

b

th

u

u

q





















 
 
 

.                                                     (7) 

Calculations show that with 1  varying from 0.2 to 0.02, this ratio is reduced from 1.42 to 

1.19. Thus, as plastic strains at the endurance limit in tension-compression decrease, so does the 

relative value of the endurance limit in alternating bending.  

 Note that in contrast to the traditional approach, here the effective SIF range values were 

equated rather than comparing the ranges of specimen surface strains in tension-compression and 

alternating bending. The discussed method provides a good fit with experimental data and 

eliminates the problems identified in Ref. [2]. 

 Turning to alternating torsion of tubular specimens, we shall assume that in this case, as 

before, the fatigue threshold is governed by the opening fracture mode. With this assumption, there 

will be a semicircular crack of radius а0 in the plane of the main normal stresses at the onset of 

fatigue crack growth. 

 Given pure shearing, the maximum normal stress is equal to the shear stress (   ). The 

elastic strain energy done by stresses normal to the crack edges in regards to the corresponding 

strains appears as
  21

2
eW

E

 
  , where ν=0.3 is Poisson’s ratio. The range of normal plastic 

strain is equal to half the range of shear plastic strain ( 0,5p p   ). The plastic strain work done 

by stresses normal to the crack edges in regards to the corresponding plastic strain is 

1

p
pW

m


 


. The diagram of cyclic deforming suggests that 1

1
1

3

23

2
n

p

E






  
     


 and, 

hence, 

1

1
1

3 3

2 2

n

p
E






  
      

 Therefore, 
2

1

1
1

1,5 3

1 2

n

pW
m






 
       

 . 

With alternating pure shearing, the effective range of SIF is: 
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By equating the right-hand sides of Equations (3) and (8) and given 0

2

th
th

u
u  , we obtain the 

relationship between the endurance limits in symmetrical cycles of pure shearing and tension-

compression (n=6): 
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The effect of cycle asymmetry can be described by the ratio of shear stress in pulsating cycle 

to that in a symmetrical cycle. To this end, it is possible to use the following expression resulting 

from relation (8): 
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This equation has a numerical solution, with the 0a  value calculated using quantity 1  found 

from Eq. (9). Calculations show (Table 1) that the effect of cycle asymmetry is smaller in this case 

compared to tension-compression. This can be explained by the fact that the function of elastic 

strains in pure shearing is smaller due to lower normal stresses. 

 Torsion experiments normally involve solid cylinders rather than tubular specimens, and the 

results of such tests are usually compared with the data obtained in alternating bending tests. The 

endurance limits in torsion and bending can be compared with the ones of Eq. (11) below, where 

bq =1.7 and tq =4/3, while 1b is evaluated by Eq. (7). 
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The results of the above calculations are presented in Table 1, which also contains averaged 

data for carbon steel of various grades as given in Refs. [4] and [5]. 

 

Table 1. Relative values of endurance limits as found for cylindrical specimens under different 

loading conditions. 
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0.2 0.92 1.42 0.64 0.96 0.82 0.78 0.55 

0.1 0.85 1.38 0.65 0.92 0.82 0.79 0.57 

0.06 0.77 1.33 0.66 0.89 0.83 0.80 0.60 

0.02 0.62 1.19 0.69 0.76 0.85 0.81 0.68 
Average value (experiment) 0.82 1.25 0.6 0.9 0.84 0.75 0.6 
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 This table shows a good agreement between calculation and experiment. Therefore, the 

model discussed here allows to properly describe endurance limits under various stresses, using 

only data on endurance limits in tension-compression without making any special assumptions. 

This demonstrates (Such an outcome may be viewed as a case for) the efficiency of using small 

crack mechanics in structural analyses. 
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