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Abstract. 

Methods of explosive loading of powder materials in conservation ampoules are applied in order to 

obtain new materials including composite ones with the unique physical and mechanical properties. 

In addition, these methods can be used to study phase transitions occurring in materials at high 

pressures and temperatures taking place behind shock waves, as well as for the synthesis of 

metastable phases. 

In order to gain a better insight into the effect of loading conditions and, in particular, to study the 

effect of detonation velocity, explosive thickness, and explosion pressure on the properties of the 

final sample, we numerically solved the problem about powder compaction in the axisymmetric 

case. 

The performed analysis shows that an increase in the decay time of the pressure applied to the 

sample due to an increase of the explosive thickness or the external loading causes no shrinkage of 

the destructed region at a fixed propagation velocity of the detonation wave. Simultaneously, a 

decrease in the propagation velocity of the detonation wave results in an appreciable shrinkage of 

this region. 

 

Introduction 
Investigation into the interaction between oblique shock waves in porous materials and powders is a 

topical problem in optimization of loading conditions for obtaining, from a given sample, a 

compacted material with spatially uniform physical and mechanical properties. In compacting a 

powder in the cylindrical scheme, an irregular interaction between shock waves occurs. The 

compacted powder displays substantial non-uniformity in particle displacements, resulting in 

inhomogeneity of powder characteristics and, in some cases, even in material failure. 

In compacting porous material and powders, the strong bonding between particles is achieved 

through the combined pressure-shear loading. During the compacting, a substantial energy is 

released at the interfaces between powder particles, resulting in surface cleaning and material 

melting in narrow interfacial regions. As a result, pore collapsing, giving rise to strong bonding 

between particles, occurs. Below, this phenomenon is termed compaction. 

V.F. Nesterenko proposed the following criterion for the formation of a strong compact: 

 ,2> VHP  (1) 

where, according to  [1], sV YH 3 . Following [1], we can write criterion (1), deduced from 

experimental data, as 

 .6> sYP  (2) 



In turn, R. Prummer [2] uses the following condition for obtaining a uniform, in its physical 

properties, cylindrical compact with no Mach reflection induced singularities at its center: VHP  , 

where P  is the detonation pressure. Comparing condition (1) with the condition VHP  , 

Nesterenko [1] arrives at a conclusion that it is impossible in principle, without a central rod, to 

obtain a spatially uniform compact in the cylindrical loading scheme since the shock pressure 

required for obtaining a dense compact (2) will always lead to Mach reflection at the center of the 

sample. 

Another important problem is preservation of the finish compact after loading. With the arrival of 

unloading waves, there arises a tensile stress that results in partial or complete destruction of the 

sample. We assume that the sample undergoes mechanical failure if the maximum tensile stress 

max  reaches a certain critical value * . In line with the adopted hypothesis, the following condition 

for the sample failure should be assumed:  

 ,> *max  (3) 

 where max  is the highest stress among the principal stresses for the strained state under study and 

*  is the critical stress. 

In the present work, the critical stress *  is estimated as  

 ),(1/(2/3)= 1* mlnYs  

 where 1m  is the residual porosity. Taking the finish-compact density to equal 99% , we obtain 

0.01=1m  and sY3*  . For the principal stresses, we have:  
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Calculation results and discussion 
In order to gain a better insight into the effect of loading conditions and, in particular, to study the 

effect of detonation velocity, explosive thickness, and explosion pressure on the properties of the 

final sample, we numerically solved the problem about powder compaction in the axisymmetric 

case. The problem statement is clear from Figure 1. We solved the full system of equations 

governing the deformation of a porous elastic-plastic material [3]. The action of the explosion 

products on the sample was modeled with a pressure applied to the upper border of the sample. The 

pressure was calculated by the approximation formula for the pressure upon unrestricted dispersion 

of detonation products [4]:  
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Here e  is the explosive thickness and e  is the adiabatic exponent of the detonation products. At 

the lower border of the sample, the rigid-wall condition was set, and the right border was stress-free. 

At the left border, the rigid-wall condition was assumed. 

In the calculations, the scheme proposed by Wilkins [5] for aluminum powders of various initial 

porosities was used. 
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Fig.1. Problem statement. 

 

Figure 2, a and  b shows the pressure isolines for the cases of planar and cylindrical symmetries with 

identical loading conditions. It is seen from Fig. 2 that, in the planar statement of the problem, a 

regular reflection of the incident shock wave takes place. In the case of the cylindrical loading 

scheme, the incident shock waves bends as it approaches the cylinder axis, and, under the same 

loading conditions, an irregular reflection occurs. 
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Fig.2. Pressure isolines: a) --- planar 

geometry; b) --- cylindrical configuration. 

 

 
Fig.3. Pressure profile (a) and longitudinal-

velocity profile )( yux  (b) for the planar and 

cylindrical geometries (solid and dashed lines, 

respectively). 

 

Figure 3, a shows the pressure profile near the symmetry axis for the cases of planar and cylindrical 

statements (solid and dashed curves, respectively). An appreciable pressure rise near the symmetry 

axis is observed in the case of cylindrical configuration compared to the planar problem due to the 

divergence of the shock wave to the axis. 

Figure 3, b shows the profile of the longitudinal velocity xu  across the sample under loading behind 

the shock front. The solid and dashed lines show the data for the planar and axisymmetric problem 

statements, respectively. It is clearly seen that the velocity in the cylindrical case is much greater 

than in the planar variant. 

As stated above, an important problem is preservation of finish compact, i.e., preventing its 

mechanical failure and obtaining a sample with uniform properties. Using criterion (3), we can find 

the interface between the solid and distructed materials. The regions of the compacted and porous 

materials for various explosive thicknesses for the external pressures  0.05=P  Mbar and 0.075=P  

Mbar are shown in Fig. 4, a and  b, respectively. In these calculations, the detonation velocity was  

0.5=D  cm/ m sec. The solid, dashed, and dot-and-dash lines outline the destruction regions for the 

explosive thicknesses  2=e  cm,  3=e  cm, and 5=e  cm, respectively. Region 1 is the 



compacted region, and Region 2, the destruction region. An analysis of these graphs shows that an 

increase in the explosive thickness and, hence, an increase of the loading decay time does not cause 

any substantial shrinkage of the destruction region. 

 

 
 

Fig.4. Compacted and destruction regions for various explosive thicknesses under external 

pressures 0.05=P  Mbar (a) and  0.075=P  Mbar (b). The detonation velocity is  0.5=D  

cm/ m sec. The solid, dashed, and dot-and-dash lines refer to the explosive thicknesses 2=e  cm, 

3=e  cm, and 5=e  cm, respectively. The compacted and destruction regions are indicated by  1 

and  2. 

 

It should be emphasized that this conclusion is valid for criterion (3). In derivation of  (3), it was 

implicitly assumed that the interfacial melted zones are narrow, and the material in these zone 

rapidly solidifies as the particles in the bulk of the material undergo cooling. If this condition does 

not hold, then there can be a situation in which, by the moment of arrival of the unloading wave, the 

material in the interfacial zones still remains melted, which will prevent compaction. In this case, 

the dimensions of the destruction region will be dependent on the loading decay time and on the 

explosive thickness. 
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Fig.5. Density isolines for 0.5=e  cm: а) --

- cylindrical configuration; б) --- planar 

statement. 

 
 

Fig.6. Porosity 1m  for 0.5=e  cm: solid 

line --- planar statement; dashed line --- 

cylindrical configuration. 

 



The explosive thickness should be large enough to prevent shock wave damping in the powder and 

to enable complete pore collapsing in the sample. Figure 5, a and b shows the density isolines for the 

explosive thickness 0.5=e  cm and the external pressure 0.05=P  Mbar. Parts a and b of Fig. 5 

depict the data for the axisymmetric and planar problem statements. Damping of the incident shock 

wave is evident from the figure. This results in incomplete powder compaction; the latter is clear 

from Fig. 6, which shows the distribution of porosity  1m  across the sample. The solid and dashed 

lines in this figure correspond to the planar case and to the cylindrical configuration, respectively. 

An analysis of these graphs shows that, in the axisymmetric case, due to the wave divergence to the 

axis, the pores undergo collapsing in a larger volume than in the planar variant. 

A twofold increase in the explosive thickness makes the decay of the incidence shock wave less 

intensive. The density isolines for the explosive thickness 1=e  cm and the external pressure 

0.05=P  Mbar are shown in Fig. 7, a and b. Parts a and b of this figure shows the calculation data 

for the axisymmetric and planar statements, respectively. It is clearly seen that in the case of 

cylindrical symmetry the shock wave bends near the axis, giving rise to an irregular reflection; in the 

planar configuration, a regular interaction occurs. Figure 8, which depicts the distribution of 

porosity  1m  across the sample compacted in the cylindrical geometry (the dashed line in Fig. 8), is 

indicative of complete collapsing of pores over the entire thickness of the sample. In the planar case 

(see the dashed line in Fig. 8), the complete collapsing of pores is observed approximately over half 

the thickness of the sample, and the porosity near the symmetry axis is close to the initial one, 0

1m . 
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Fig.7. Density isolines for 1=e  cm: a) --- 

cylindrical configuration; b) --- planar 

configuration. 

 

 
Fig.8. Porosity 1m  for 1=e  cm: solid line 

--- planar statement; dashed line --- cylindrical 

configuration. 

 

The density isolines for the explosive thickness 2=e  cm are shown in Fig. 9, a and b. The external 

pressure was taken to be  0.05=P  Mbar. Parts a and b of this figure show the calculation data for 

the axisymmetric and planar statements. In the cylindrical case (see Fig. 9, a), an irregular reflection 

is clearly observed, whereas in the planar case (see Fig. 9, b) the incident shock wave interacts with 

the rigid wall in the regular manner. In both cases, all pores in the sample collapse completely. 

Further calculations were carried out for the explosive thicknesses 2=e  cm, 3=e  cm, and 5=e  

cm. 

Figure 10, a and b illustrates the effect of applied pressure on the dimensions (thickness?) of the 

destruction region. In the calculations, the external pressures were  0.05=P  Mbar and  0.075=P  



Mbar, respectively, and the detonation velocity in both cases was  0.7=D  cm/ m sec. The solid and 

dashed lines show the data for the explosive thicknesses 3=e  cm and  5=e  см. Regions  1 and 2 

are the compacted and destruction regions. As is seen from the figure, an increase in the external 

load causes no shrinkage of the destruction zone. Thus, it can be concluded that an increase in the 

decay time of the pressure applied to the sample resulting from an increase in the explosive 

thickness or in the value of the external load does not make the destruction zone shrink at a fixed 

propagation velocity of the detonation wave. 
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Fig.9. Density isolines for 2=e  cm: a) --- 

cylindrical configuration; b) --- planar 

statement. 

 

 
Fig.10. Compacted and destructed regions 

for two values of external pressure,  0.05=P  

Mbar (a) and  0.075=P  Mbar (b). The 

detonation velocity is  0.7=D  cm/ m sec. The 

solid and dashed lines show the calculation data 

for the explosive thicknesses  3=e  cm and 

5=e  см. 

 

A decrease in the velocity of the detonation wave results in a considerable shrinkage of the 

destruction region. Figure 11 show the compacted (1) and destructed (2) regions in the sample for 

the detonation velocities 0.3=D , 0.5 , 0.7  cm/ m sec at a fixed explosive thickness 5=e  cm and 

at a fixed external pressure  0.05=P  Mbar. The solid, dashed, and dot-and-dash lines show the 

calculation data for the detonation velocities 0.3=D  cm/ m sec, 0.5=D  cm/ m sec, and 0.7=D  

cm/ m sec. 

 

 
 

Fig.11. Compacted (1) and destructed (2) regions for three values of the detonation velocity. 

The solid, dashed, and dot-and-dash lines refer to  0.3=D  cm/ m sec, 0.5=D  cm/ m sec, and 

0.7=D  cm/ msec . 

 

The isolines of pressure for the indicated loading parameters are shown in Figure 12, a--c. It is seen 

from the graphs that, as the shock-wave propagation velocity increases, the angle of incidence 

decreases and the reflected shock causes material destruction (see Fig. 12, b and c). As the velocity 

of the detonation wave increases, the angle of incidence of the incident shock wave increases and, as 



it is seen from Fig. 12, a, at the velocity  0.3=D  cm/ m sec the incident shock wave is close to the 

normal shock and the amplitude of the reflection wave is almost zero. 
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Fig.12. Pressure isolines: a) --- detonation velocity 0.7=D  cm/ m sec; b) --- detonation velocity 

0.5=D  cm/ m sec; c) --- detonation velocity 0.3=D  cm/ m sec 

 

Since in the case of cylindrical symmetry no regular reflection occurs, the final sample turns out to 

be inhomogeneous. Figure 13 shows the distribution of the longitudinal velocity xu  (рис. 13, a) and 

temperature T  (рис. 13, b) across the sample in the compacted region for the detonation velocity 

0.5=D  cm/ m sec. An appreciable non-uniformity in the distribution of parameters is evident from 

the graphs. Near the axis, both the velocity and temperature are greater than in the region some 

distance away from it. 
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Fig.13. Predicted distributions of the longitudinal velocity xu  (a) and temperature T  (b) across 

the compacted region of the sample for the detonation velocity 0.5=D  cm/ m sec. 

 

Parts a and b of Fig. 14 show the distributions of the longitudinal velocity xu   and temperature T   

across the compacted region of the sample predicted for the detonation velocity 0.3=D  cm/ m sec. 

Here, under identical loading parameters, the final sample is quire homogeneous. 



As a result, it becomes possible to obtain spatially uniform compacted samples. The necessary 

condition for this is sufficiently low detonation velocity, equal, for the aluminum powder, to 

0.3  cm/ m sec. Here, on the one hand, compaction condition  (1) should be fulfilled and, on the 

other, the uniformity of loading parameters across the sample should be ensured. 

Thus, the compaction of powders with low detonation velocities results in a considerable shrinkage 

of destruction zones in finish samples and in spatial uniformity of material parameters in their 

compacted parts. 
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Fig.14. Distributions of the longitudinal velocity xu  (a) and temperature T  (b) across the 

compacted region of the sample for the detonation velocity 0.3=D  cm/ m sec. 

 

The performed analysis shows that an increase in the decay time of the pressure applied to the 

sample due to an increase of the explosive thickness or the external loading causes no shrinkage of 

the destructed region at a fixed propagation velocity of the detonation wave. Simultaneously, a 

decrease in the propagation velocity of the detonation wave results in an appreciable shrinkage of 

this region. 

 

Conclusions 
The following conclusions can be drawn from the present study of powder compaction under shock 

pressing in the axisymmetric case. An increase in the pressure decay time due to increasing either 

the explosive thickness or the external loading intensity causes no shrinkage of the destruction zone 

at a fixed propagation velocity of the detonation wave. Compaction of powders with low detonation 

velocities results in a considerable shrinkage of destruction zones in finish samples and in a uniform 

distribution of material parameters in the compacted region. 
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