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Abstract. Marble slabs are frequently used as façade panels to externally cover buildings. In some 

cases bowing of such façade panels after a certain time of environmental exposure is experienced. 

The bowing is generally accompanied by a progressive reduction of strength. In the present paper, a 

theoretical model to calculate the progressive bowing and the thermal fatigue of marble slabs 

submitted to temperature cycles is presented. The model, developed within the framework of fracture 

mechanics, takes into account the mechanical microstructural characteristics of the marble as well 

as the actual cyclic temperature field in the material. The slabs are subjected to a thermal gradient 

along their thickness (due to different values of temperature between the outer and inner sides of the 

slab) as well as to thermal fluctuation on the two sides of the slab due to daily and seasonal 

temperature excursions. This thermal action causes a stress field which can locally determine 

microcracks due to decohesion of calcite grains. Stress intensification near the cracks occurs and 

leads to crack propagation in the slab. Such crack propagation under thermal actions is evaluated 

and the corresponding bowing is calculated. 

 

 

Introduction  
Marble claddings are frequently used as façade panels to externally cover buildings. They are 

subjected to different actions that deteriorate the material, including: temperature (daily and seasonal 

excursions, through-thickness gradient), mechanical loads (wind, self-weight), chemical attacks 

(acid rain), humidity changes. Temperature may induce stresses due to thermal expansion (restraint 

effects of the anchorage system, nonlinear temperature fields, nonuniform/anisotropic thermal 

expansion). One visible phenomenon connected to deterioration of marble is bowing, which is 

characterised by permanent out-of-plane deflections. Bowing is generally accompanied by an 

overall reduction of strength which increases with increasing degree of bowing, while at the 

microstructural level of the material bowing is accompanied by a decohesion of calcite grains. 

In order to understand the phenomenon of bowing in marble slabs, several experimental and 

theoretical studies [1-6] have been carried out, starting with the pioneering work of Rayleigh [7]. In 

situ measurements using a bow-meter [8] showed that the bowing of marble slabs, ranging from 

concave to convex shapes, is mainly dependent on the microstructure of the marble, the slab 

position, as well as on the fluctuation of temperature and moisture content. The determination of the 

overall mechanical behaviour of marble slabs on the basis of the aforementioned micromechanical 

phenomena might be performed within the framework of Linear Elastic Fracture Mechanics 

(LEFM) [9]. Accordingly, stress/strain state induced by cyclic thermal loading acting on the marble 



slab can be determined along with the deflection of the slab due to both elastic bulk deformation and 

cracks. 

In the present paper, following a recent work by the authors [10] a theoretical model to estimate the 

progressive bowing and the thermal fatigue of marble slabs submitted to temperature cycles is 

presented. The model, developed within the framework of LEFM, takes into account the mechanical 

microstructural characteristics of the marble as well as the actual cyclic temperature field in the 

material. The slabs are subjected to a thermal gradient along their thickness (due to different values 

of temperature between the outer and inner sides of the slab) as well as to thermal fluctuation on the 

two sides of the slab due to daily and seasonal temperature excursions. This thermal action causes a 

stress field which can locally determine microcracks due to decohesion of grains. Stress 

intensification near the cracks occurs and leads to crack propagation in the slab. Such crack 

propagation under thermal actions is evaluated and the corresponding deflection (bowing) is 

calculated. Some examples are presented which show the strong influence of material microstructure 

on the degree of bowing. 

 

Thermal Stresses in the Bulk Material 
Attached to the slab of thickness h is a coordinate system with through-thickness axis x and 

longitudinal axis z. The kinematic assumptions are that of beam flexural theory (linear longitudinal 

strain along the beam height, the other strain components being null). A plane strain condition is 

assumed. The material is mechanically linear elastic, homogeneous and isotropic, while the thermal 

expansion is heterogeneous along the panel thickness. The resulting normal stress z  is 

),(
)21(

)(
),(

)1)(21(

)1(
),( txT

Ex
tx

E
tx z

zz 
















      (1) 

where T(x, t) = temperature (variation with respect to a reference value) function of time t and 

space x obtained from an heat conduction analysis, E = Young modulus,  = Poisson ratio, z  = 

longitudinal thermal expansion coefficient, z  = longitudinal normal strain. 

Beam theory leads to the following compatibility condition )()(),( tBxtAtxz  , where A and B, 

functions of time, are determined by applying the boundary conditions at the slab ends, which, in 

marble claddings, is dictated by the adopted anchorage system.  

For a slab with clamped ends, z  is equal to zero and, hence, 0 BA . For a slab with hinged 

ends, the axial force and the bending moment are equal to zero. This yields the following 

expressions for A and B: 
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It can be note that, if T  is a linear function of x, z  is equal to zero for mechanically and 

thermally homogeneous and isotropic case with hinged boundary conditions. 

As it is well known [7], the thermal expansion of calcite grains is anisotropic. In the present model, 

where thermal expansion is assumed to be heterogeneous and hence the coefficient z  is a function 

of the through-thickness coordinate x, the thermal expansion heterogeneity is linked to the 

aforementioned thermal anisotropy of calcite grains. Now let us assume that the thermal expansion 

of calcite grains is orthotropic (1-2 are the material thermal expansion axes, characterized by the 

coefficients 1  and 2 , respectively), the longitudinal thermal expansion coefficient along the z-

axis z  is obtained from 
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where  is the angle formed by the material thermal expansion axes with the longitudinal axis z. In 

particular  is the counterclockwise angle of 1 and z (Figure 1a). 

In the light of the above, the thermal expansion heterogeneity (see )(xz ) is due to the different 

orientation (see )(x ) of the material thermal expansion axes of each grain. Therefore )(xz  is 

hereafter assumed to be a stepwise varying function where a jump in such a function occurs at each 

calcite grain boundary. Assuming a geometrically simple grain arrangement for our model, we 

might have a stack of layers with different values of z  in each layer, where the layer thickness 

might be taken as the calcite grain mean dimension d. In other word, the value of  changes each 

time the coordinate x attains a multiple value of d, see Figure 1a.  

In the following, apart from the thermally homogeneous case, we assume a stack sequence of grains 

which is chessboard-like (a-b-a-b-a-), see Figure 1b; accordingly )()( a

zz x    [or )()( b

zz x   ] at 

points occupied by material “a” (or “b”). Also, we consider a random arrangement of thermal axis 

orientation in each grain. 

 

 
Figure 1. (a) Stack of grain layers along the slab thickness with different orientation of the 

thermal expansion axes 1-2; (b) Chessboard-like arrangement of grain layers. 

 

Intergranular Microcracking 
Under environmental conditions a diffuse cracking, mainly developing at the calcite grain 

boundaries, can take place at the external surface of the marble slab. Such a diffuse cracking can be 

incorporated in the present model to calculate the ensuing deflection of the slab due to thermal 

loading. Intergranular cracking due to decohesion of calcite grains are treated as equivalent multiple 

edge cracks. To this end a crack density parameter n, corresponding to a number of equivalent 

external edge cracks, can be defined. Assuming hence that intergranular cracking occurs, the crack 

density parameter can be correlated with the specific surface Ss of the grains (i.e. the total surface 

area of the grains per unit volume of material) as follows for a slab of length L (Figure 2a) [10] 
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For instance, in the case of ideal cubic grains, the specific surface area Ss turns out to be equal to 6/d 

cm
2
/cm

3
, that is, Ss is dependent on the grain size (note that typically calcite grain size d ranges from 

100 to 500 m). The shape of calcite grains is not accounted for in the present model, although 
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marble microstructures do present sometimes different geometric features (see the extreme cases of 

xenoblastic to homoblastic textures reported in Figure 2b). 

Considering firstly an external edge crack submitted to the thermal stress z  acting in the slab, the 

Mode I Stress Intensity Factor (SIF) of the crack can be calculated using the theoretical 2D solution 

for point loads P (equal to adtaz
 ),( ) acting on the crack faces at a depth a  ( a  = h – x, with 

aa 0 ) from the outer side and the superposition principle. According to the solution reported in 

Ref. [11], p. 71 we have 
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Figure 2. (a) Schematics on the intergranular equivalent cracking; (b) Two extreme cases of 

marble microstructure where the texture of calcite grains is evident (after Ref. [2]): xenoblastic 

texture where the grain boundaries are irregular (top), homoblastic texture where the grain 

boundaries are rather smooth (bottom). 

 

Deflection as a Consequence of Microcracking  
The presence of a single edge crack increases the compliance of the slab in comparison to the bulk 

counterpart. The corresponding deflection (positive outwards) at the centre of the slab can be 

worked out from energetic consideration [10] 
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where ),()( taK T

I  is the SIF, calculated according to Eq. 5, dependent on the temperature field 

 ),( txT , and the dimensionless function F refers to the pure bending solution (see Ref. [11], pp. 55-

56). In the case of multiple microcracking on the external edge, the corresponding central deflection 

becomes  
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where 
32

nL
z   for clamped ends and 

8

nL
z   for hinged ends of the slab. 

Finally, the maximum value during a temperature cycle T of the crack-induced deflection for a crack 

of length a is given by ),(max)( tafaf ncracks
Tt

 . 

 

Bowing as a Consequence of Microcrack Propagation  

Since the slab is subjected to fluctuating temperatures, the consequent thermal stress z  acts as a 

cyclic load, producing in the microcracked material a periodic variation of SIF which in turn might 

be responsible of stable propagation of microcracks.  

If one assumes that the empirical relation of Paris for fatigue crack growth is applicable to the 

present case of marble under thermal cycles [12], stable crack growth rate dNda  can be correlated 

with the variation of the SIF in the crack during a loading cycle )(aKI   

(where )()()( min,max, aKaKaK III  ), namely [13] m

IKCdNda   (C and m are material 

constants). Paris law can integrated using a step-by-step procedure with a finite constant increment 

of crack length a  and with an initial crack length 0a  (for instance equal to the mean dimension d 

of the calcite grains). At the first step, ),( 0 taKI  and hence )( 0aKI  is determined. Then the number 

of temperature cycles 1N  needed to propagate the crack to a length aaa  01  is calculated. The 

procedure continues until a critical crack length ac, according to a LEFM failure criterion, is attained 

(for which the maximum SIF )(max, cI aK  during a loading cycle is equal to the fracture toughness of 

the material ICK ). Such a critical condition indicates unstable (instantaneous) crack propagation, 

and the corresponding number of cycles Nc gives the fatigue life (number of cycles to failure) of the 

slab. 

Propagation of microcracks is an irreversible phenomenon, so that it is deemed to be reasonable to 

correlate the increment of slab deflection due to crack propagation to the slab bowing, which is 

characterized by permanent deflections. In other word, bowing )(Nb  after a given number of cycles 

N is taken to be equal to )()]([ 0afNaf  . 

 

Illustrative Example 
We consider a typical case of a marble slab of thickness h = 30mm and span L between anchorages 

equal to 0.6 m. The thermal cycles on the external and internal surfaces are described by in-phase 

sinusoidal functions. The temperature variation range is ±11 °C and ±9 °C on the external and 

internal surfaces, respectively. These temperature ranges are characteristic of diurnal temperature 

excursions in marble claddings in a Central Italy area [14]. 

The material parameters are [12]: E = 52 GPa,  = 0.16, m = 4, C = 3x10
-4

 (for da/dN expressed in 

m and KI in MPa m
0.5

) KIC = 1.35 MPa m
0.5

 [12]. The mean size d of calcite grains is 200 m 

which corresponds for an ideal cubic tessellation to a specific surface of grain boundaries Ss equal to 

300 cm
2
/cm

3
 and in turn, according to Eq. 4, to a crack density parameter n = 9000. From the 

literature we take 1 = 25 m/m/°C, 2 = -6 m/m/°C [7]. In the present simulations, the initial 

cracking depth is taken as equal to d, namely a0 = 200 m, and a is assumed to be equal to 1% of 

the current crack length a. 

Let us assume a uniform Probability Density Function (PDF) for the orientation of thermal 

expansion axes of calcite grains with respect to the longitudinal axis z of the slab (Figure 1), that is 
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The weighted mean value of the longitudinal thermal expansion coefficient z  becomes (see Eq. 3) 
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and the weighted variance is 
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The numerical values obtained from Eqs 9 and 10 for the marble under study are:   7z  

m/m/°C and   11z  m/m/°C. 

In the following simulations, as far as thermal expansion is concerned, we analyse 3 different cases: 

(i) homogeneous case where  zz x  )( ; (ii) chessboard-like case (Figure 1b) where 

   zz

a

z  )(  and    zz

b

z  )( ; (iii) random case where 
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1 xxxz    and )(x  distribution follows the uniform PDF of Eq. 8. For 

case (iii), pseudo-random generation of )(x  values is numerically performed. Since the statistical 

phenomenon is like a stochastic process (sequence of statistical values) a number of realizations are 

considered. In particular, three realizations of )(x  sequence [termed random (1), random (2) and 

random (3)] are considered, bearing in mind that a much larger number would be needed to perform 

Monte Carlo-like simulations on the statistical outcome of the present model. 

For the homogeneous case the normal stress distributions along the thickness of the slab at 

temperature peak for the hinged slab is nearly null, while, for the clamped slab, the stress values are 

relevant and they vary linearly along the thickness (for the clamped slab a number of thermal cycles 

of the order of 10
3
 is needed to reach failure while for the hinged slab more the 10

12
 cycles are 

needed to reach failure). When thermal expansion of the material is treated as heterogeneous, both 

chessboard-like and random models (Figure 3) exhibit for the hinged slab, thermal stress values 

significantly higher than those in the homogeneous counterpart. The chessboard-like model 

produces an oscillating tensile/compressive stress distribution along the slab thickness, while the 

random model determines scattered values of stress but roughly with the same intensity as those 

related to the chessboard-like model. 

Figure 4 shows bowing against number of thermal cycles for the hinged slab in the three thermal 

expansion cases being analysed. Figure 4a shows that an heterogeneous chessboard-like thermal 

expansion influences bowing evolution. Moreover, the random simulations (Figure 4b) indicate that 

the bowing evolution rate is significantly higher in comparison to the cases shown in Figure 4a. 

More in details, it can be noted that fatigue life of the slab is significantly reduced by the 

heterogeneous random distributions of thermal expansion along the slab thickness.  

 

Conclusions 

The paper proposes a theoretical model to estimate bowing in marble slabs subjected to thermal 

cycles. The model is based on LEFM concepts applied to marble slabs where grain decohesion due 

to surface damage can occur. The model is able to estimate the stress intensification near the crack 

tip and to compute the stress which leads to crack propagation in the slab. Such crack propagation 

under thermal actions is evaluated and the corresponding bowing is calculated. Some examples have 

been presented to show the strong influence of material microstructure on the degree of bowing. In 

particular, it has been shown that the evolution rate of bowing depends strongly on the degree of 

heterogeneity in the thermal expansion behaviour of the material. When a random distribution 

between calcite grains of the thermal expansion coefficient is considered (this being a reasonable 

description of the actual anisotropic thermal expansion of grains), the bowing evolution rate 

estimated according to the present model increases (and the fatigue life decreases) dramatically in 



comparison to the results obtained with the rather idealized model with homogeneous or chessboard-

like thermal expansion.  
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Figure 3.  Thermal stress distribution along the thickness at t = tP/4 (x = 0 inner side) for 

chessboard-like model and random model (the 2nd realization of the stochastic process is reported) 

with hinged boundary conditions. 

 

1 1E+002 1E+004 1E+006 1E+008 1E+010 1E+012
Number of thermal cycles,  N

1E-005

0.0001

0.001

0.01

0.1

1

10

100

N
o

rm
a

li
z
e

d
 c

o
n

v
e

x
 b

o
w

in
g

, 
b

/L
  
[m

m
/m

]

homogeneous
chessboard-like

  (a) 

1 1E+002 1E+004 1E+006
Number of thermal cycles,  N

0.0001

0.001

0.01

0.1

1

10

100

N
o

rm
a

liz
e

d
 c

o
n

v
e

x
 b

o
w

in
g

, 
b

/L
  

[m
m

/m
]

random (1)

random (2)
random (3)

  (b) 

Figure 4.  Bowing vs number of thermal cycles with hinged boundary conditions: (a) 

homogeneous and chessboard-like models; (b) three realizations of random model. 
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