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Abstract. The fatigue crack growth behaviour of the quenched and tempered steel 25CrMo4 is 

investigated at various load ratios and notch depths. The growth behaviour in the notch stress field is 

monitored in detail, whereby also information about the buildup of crack closure effects and the 

transition from short to long crack behaviour is gained. A crack growth model which is able to 

describe the growth behaviour for arbitrary crack length and stress ratio, is developed and adapted to 

the experimental results. Finally, the application of the model to real components is discussed, 

taking account of locally variable loads and residual stresses. 

 

Introduction 
The high number of cycles and the resulting low allowable flaw size pose a challenge in assessing 

the damage tolerance of drivetrain components. To decide whether a flaw of a certain length is still 

safe (at least until the next inspection of the component), it is important to be able to model the 

crack growth behaviour as precisely as possible. So far, the growth behaviour of short cracks has 

been described only inadequately or not at all in analytical models. In this paper a simple analytical 

model for describing the crack growth behaviour for any crack length and stress ratios will be 

introduced. 

 

Analytical description of the crack growth behaviour 

The following considerations on crack growth behaviour are based on the simplified model in 

Fig. 1a. Starting from a sharp notch with parallel flanks of length a0, a crack of length a grows. The 

sharp notch can be regarded as a crack of length a0 which is not subject to any crack closure. 

Therefore the stress intensity factor is calculated via K ~ (a)
1/2 

using the whole crack length 

a = a0 + a, whereas for the build-up of crack closure only the crack extension a takes effect. The 

analytical description of crack growth under cyclic loading, with the maximum stress max, the 

minimum stress min and the stress range =max–min as well as the respective stress intensity 

factors Kmax, Kmin, K for any stress ratio R=min/max=Kmin/Kmax and crack extension a, is based 

on the crack growth equations according to Erdogan/Ratwani [1] and Forman/Mettu [2] including 

the Newman’s crack closure function [3]. These equations were modified to take account of the 

short crack behaviour (i.e. for small a). A summary and short discussion of these equations can be 

found in [4]. Already the crack growth equation according to Erdogan/Ratwani [1] 
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represent the three regions of the crack growth curve (Fig. 1b). Here the stress ratio R is only used to 

determine the asymptote for unstable crack growth,K=(1–R)Kc (region III), from the fracture 

toughness Kc. The position of the asymptote for the crack growth threshold (region I) is determined 

by Kth, and the position of the curve for stable crack growth (region II) is determined by C‘ and m. 

Therefore it is necessary to find an analytical description for the dependence of the parameters Kth 

and C‘ on the stress ratio R and the crack extension a. 

 

   
 

Fig.1. (a) Sharp notch with growing crack; (b) fatigue crack growth curve 

 

The Forman/Mettu equation [2]  
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also represents the three regions of the crack growth curve. Additionally, the curvature at the 

transition between the different areas can be adjusted with p and q. Setting p=m and q=1 leads to 

 

 

C

m

K

K

KK
FC

dN

da

max

th

lc

1


  with 

m

R

f
F 














1

1
lc        (3, 4) 

 

Flc describes the position of region II depending on the stress ratio R for long cracks (large crack 

extensions a, index “lc”). The cause of this dependence is seen in crack closure effects, which are 

described by the crack opening function  
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Newman [3] achieved, based on finite element simulations of plasticity-induced crack closure for 

long cracks, the following analytical approximation for the crack opening function: 
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In what follows, the values max/F=0.3 and =3 are assigned, as it applies for approximate plane 

strain condition and largely elastic crack behaviour; for a more detailed discussion of these 

parameters cf. [3,4]. The curves in Fig. 5 (left) for the crack opening function f and Fig. 5 (right) for 

the crack velocity factor F for a = 10 mm (≈Flc) show the behaviour valid for long cracks in 

graphical form. For cracks with arbitrary crack extension a an empirical approach for the crack 

velocity factor F is developed further below. 

The R-dependence of the threshold for long crack growth propagation is approximated by [2,4] 
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where K0 is the threshold for long crack growth at R=0, and Cth is an adjustment parameter. a0,fikt is 

a fictional intrinsic length scale based on the concept of El Haddad [5] for the approximate 

consideration of short crack effects. It is assumed that a crack of the total length a=0 shows a 

threshold value of 0 and crack closure builds up until about the total length a=a0,fikt. At least in the 

presence of an initial notch a0, see Fig. 1a, this concept proves to be unsustainable because only the 

crack extension a and not the total crack length a is relevant to the build-up of crack closure 

effects. Furthermore, also in the absence of crack closure the threshold value is not 0 but equal to the 

intrinsic threshold for crack propagation Kth,eff. For these reasons the application of the El Haddad 

correction is not considered (i.e., a0,fikt=0) and Eq. 8 is used exclusively to describe the 

R-dependence of the long crack threshold. 

Instead, for the description of the threshold build-up starting from the intrinsic value of Kth,eff at a 

crack extension of a=0 to the long crack growth threshold Kth,lc (for large a) the empirical 

approach 
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is proposed. The li can be interpreted as fictitious length scales for the formation of crack closure 

effects (similar to a0,fikt) and determined in conjunction with the vi by fitting of the experimentally 

obtained crack growth resistance curve (Kth plotted against a), see Fig. 4. 

Since the crack velocity factor F also describes the effects of the same crack closure mechanisms, in 

analogy to Eq. 9 the approximation 
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with the same values for the li and vi is chosen. Flc is calculated according to equations (4) and (6). 

In the crack growth equation (3) then Flc is to be replaced by F. Fig. 5 shows this behaviour 

graphically. 

 

Experimental investigations  
As material for the experimental investigations the QT steel 25CrMo4 widely used for drivetrain 

components was chosen. The material has a bainitic microstructure and a hardness of ~245 HV10. 

In the tensile test, a 0.2% yield strength of 512 MPa and a tensile strength of 674 MPa with an 

elongation at fracture of 18.9% is obtained. For determining the cyclic crack resistance curves, 

SENB (Single Edge Notched Bending) specimens measuring 100x6x20 mm with different notch 

depths a0 (0.35mm, 1 mm, 5.3 mm) were machined. The notches were sharpened by means of a 

razor blade coated with diamond paste (1 µm). The samples were then compression pre-cracked at a 

stress ratio of R=10 to obtain an incipient fatigue crack, which is fully open due to the residual 

tensile stresses from compression pre-cracking so that crack closure effects can be excluded. The 

samples were then subjected to cyclic loading under eight-point bending in a resonance testing 

machine at a test frequency of 108 Hz. The crack growth was measured by DC potential drop 

method. 

 

 
 

Fig.2. Experimental procedure [6]  

The experiments are conducted with step-wise increasing loads, see also [6]. The crack grows 

initially, but after a certain crack extension a crack arrest occurs due to the build-up of crack 

closure. Subsequently, the load is increased so that the crack can grow further. In this way, the crack 



resistance curve is obtained point by point (Fig. 2). As soon as the crack starts to grow through, one 

gets the crack growth curve. This crack growth curve is the one of long cracks, because at that time 

the crack closure has already built up completely. 

 

Parameter determination 
For the investigated material, in place of Eq. 3 the slightly modified crack growth equation 
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is used, which gives a significantly better fit of the transitions between the three regions of the crack 

growth curve. 

F is calculated according to Eq. 11 with Flc according to Eq. 4, and Kth is calculated according to 

Eq. 9 with Kth,lc according to Eq. 8. The model parameters determined from the experiment are 

summarized in Table 1.  

The parameters were obtained as follows: first the parameters for the growth of long cracks were 

determined from the crack growth curves, Fig. 3. Subsequently, the crack resistance curves were 

adapted, Fig. 4. 

Fig. 5 right shows the curves of the crack velocity factor F according to Eq. 11 for different crack 

extensions a as a function of the stress ratio R. At all stress ratios R, a clear difference between 

short and long crack behaviour is recognized. In addition, the threshold Kth is much lower for short 

cracks, as is evident from the crack resistance curves in Fig. 4. All this leads to a marked deviation 

of the growth behaviour of short cracks compared to that of long cracks, see Fig. 3 right. 

 

Table 1. Parameters of the fatigue crack growth model for 25CrMo4 

 

Parameter Value Unit 

C 8 [nm / (MPa m
1/2

)] 

Kc 90 [MPa m
1/2

] 

m 2,88 - 

 3 - 

maxF 0,3 - 

Kth,eff 2,2 [MPa m
1/2

] 

K0 8,5 [MPa m
1/2

] 

Cth 0,115 - 

l1 0,08 [mm] 

l2 1,55 [mm] 

v1 0,45 - 

v2 0,55 - 

 

 

Fig. 5 right shows the curves of the crack velocity factor F according to Eq. 11 for different crack 

extensions a as a function of the stress ratio R. At all stress ratios R, a clear difference between 

short and long crack behaviour is recognized. In addition, the threshold Kth is much lower for short 



cracks, as is evident from the crack resistance curves in Fig. 4. All this leads to a marked deviation 

of the growth behaviour of short cracks compared to that of long cracks, see Fig. 3 right. 

 

  
 

Fig.3. Fatigue crack growth curves at different crack extensions a and stress ratios R –     

experiment and analytical model 

 

  
Fig.4. Crack resistance curves: crack growth threshold Kth vs. crack extension a from Eq. 9 for 

different stress ratios R – experiment and analytical model 

 

Model verification 
In order to verify the model, the growth of a short crack starting from a notch of depth a0 = 0,812 

mm (R=-1) is calculated and compared with the measured data. Good agreement between 

measurement and calculation is observed, see Fig. 6. The left limiting curve corresponds to a crack 

extension a=0 (short crack behaviour), the right to a very large a (long crack behaviour). In the 

first two load steps the crack slows down and stops (curves 1, 2). Only after a further increase of the 



load the crack grows, after an initial slight deceleration, finally through, in the course of which it 

approaches the behaviour of long cracks (curve 3). 

 

   
 

Fig.5. Crack opening stress function f from Eq. (6) and crack velocity factor F from Eq. (11) for 

different crack extensions a depending on the stress ratio R 

 

 
 

Fig.6. Growth of a short crack – experiment and computation 

 

Damage tolerance assessment procedure 
For assessing the damage tolerance of structural component, especially the influence of the locally 

varying stress fields due to the external loading as well as due to residual stresses must be 

considered. This is most easily done by using a Green’s function [7] 
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where at each point of the crack flank x the cyclic load range (x) is given by the difference 

between maximum and minimum load stress max,L(x) and min,L(x), respectively. Both for 

determining the threshold value (for endurance evaluation) from Eq. 9 and for determining the crack 

growth rate (for lifetime assessment) from Eq. 12 the stress ratio R must be known. Since max,L(x), 

min,L(x) and res(x) vary locally, the local stress ratio R(x) is obtained from 
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A conservative approach is to determine the maximum of R along the crack flanks; in a somewhat 

less conservative manner, also be the mean value of R can be used. 
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