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Abstract. In the present paper effects of cohesive zone models to crack simulation are studied 

systematically. For this purpose a special cohesive element has been developed and implemented 

into the commercial FEM code ABAQUS. The computational investigation based on a CT specimen 

confirms that the load vs. load line displacement curve is slightly dependent on the cohesive zone 

model. Influence to the fracture parameter, such as 5, is limited to 5%. Significant deviation is 

observed in prediction of crack propagation, the deviation exceeds 35%. To obtain a realistic crack 

propagation, one has to increase the stiffness of the cohesive zone. The fracture energy release rate 

from the cohesive zone model computation is generally not equal to the cohesive energy. The 

difference depends on the cohesive law and vanishes only in an elastic specimen. With increasing 

cohesive strength, the discrepancy between them grows and becomes stable for Tmax>30 under 

plane strain loading conditions. The maximum deviation exceeds 40%. 

 

 

1. Introduction 

The cohesive zone model has been popular in computational fracture mechanics community due to 

its simple formulation, easy implementation in FEM codes and flexible applications in crack 

analysis. One of key advantages of the model is in separation of material deformations from material 

failure in a ductile material [1]. The deformation is described by the plasticity and cracking by the 

cohesive zone model. The fracture process zone is simplified into a strip ahead of the crack tip. 

Material behavior in the cohesive zone follows a cohesive law. The cohesive law is responsible 

for material failure under different loading configuration. The cracking is represented as separation 

of material which is described by the resistance tractions and the surface separation distance, the T- 

relation defining continuous correlation between traction and separation in the cohesive zone. In 

general cases both variables are vectors, so that the cohesive law is defined in a vector equation. For 

a mode I crack, however, only normal traction vs. normal separation plays a role in material failure, 

that is, the cohesive law is expressed in a function, T().  

Before material damaging, the fracture process zone does not initiate and the cohesive zone 

should not exist. It follows that the cohesive zone will initiate only the traction ahead of the crack tip 

exceeds a critical value. The stiffness of the cohesive zone is infinite, a rigid cohesive zone [2]. This 

original idea of the cohesive zone model leads to a discontinuous function T() and is numerically 

difficult to handle. The most cohesive laws published papers in the past decades [4-12] prefer to 

assume a continuous traction-separation relation starting from zero loading. That means, the 

cohesive zone exists in even without loading, a soft cohesive zone.  

It is physically meaningless but numerical necessary if one works with the conventional finite 

element method. It becomes then an open issue how strong the effect of such cohesive laws to 

cracking simulation is. Numerically this problem becomes how to quantify effects of the material 

stiffness of the cohesive zone. 



Fracture mechanics is built on energy balance around the crack tip and during crack propagation. 

Using the energy release rate calibrates crack initiation and propagation. In cohesive zone modeling 

the crack initiates and propagates just based on the energy dissipation in the cohesive zone,  
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Above  denotes the cohesive energy to separate a material particle of the cohesive zone. 

Commonly, the cohesive energy is assumed to equal the energy release rate for fracture [8-11]. 

Yuan et al. [12] studied variations of the cohesive energy in crack initiation and subsequent crack 

propagation. It was found that the cohesive energy for crack initiation is significantly larger than  

for steady-state crack propagation. Computational results [14] show the cohesive energy seems 

smaller than Ji, almost by factor 2. Based on these observations, it is interesting to re-examine the 

correlation between the cohesive energy and the energy release rate of fracture. 

In the present paper a special cohesive element is developed for analyze effects of the cohesive 

law. Both discontinuous and continuous cohesive laws can be considered accurately. 

Interdependence among threshold value of the cohesive laws and the stiffness as well as the 

maximum strength of the cohesive zone is considered. Finally, the relation between G and Ji is 

discussed.  

 

2. Formulation of the cohesive element with threshold 

Under mode I loading conditions, the crack tip field is symmetric to the crack plane and only a half 

of the specimen has to be discretized [16]. The cohesive zone initiates and propagates along the 

symmetric plane. If the cohesive law contains a threshold value, i.e. the cohesive zone initiates only 

the traction ahead of the crack tip exceeds the threshold value, the conventional continuum element 

cannot be applied. Since the rigid cohesive zone stiffness before reaching the threshold is infinite, 

one cannot use the conventional FEM formulation. In the present work only mode I cracks will be 

considered, so that a crack lies in the symmetric plane and the specimen. One may use the node 

release technique to simulate crack propagation combined with the cohesive law.  

The solid element takes the conventional FEM formulation. The potential cohesive zone is 

located in the edge of the element. Should the element stress not exceed the threshold value of the 

cohesive law, the element works as a conventional continuum element. The lower boundary is fixed 

due to symmetry and enforced to close using the penalty method [17]. As soon as the stress in the 

element exceeds the threshold value, the node will be released, but loaded by a nodal force and the 

penalty method for the fixed boundary will be replaced by the cohesive zone. The element surface 

will not totally release quickly, but loaded by a defined traction which is controlled by the cohesive 

law. An increment of the cohesive zone is formed. In the following steps the nodal force of the 

element surface will be release gradually, in accordance with the cohesive law. If the maximum 

separation is reached, the node is totally free and a crack increment is generated. To improve 

accuracy of the computations, the stress in the element ahead of the crack tip will be averaged 

following the idea in [15].  

The three-dimensional finite element formulation above has been implemented into the general 

purpose commercial FEM code, ABAQUS, via the user-defined element (UEL) [18]. Extensive 

verifications have been taken for the programming. More details about the computational algorithms 

and programming will be published separately. 

 

3. Cohesive zone models 

Cohesive laws have been suggested in most different forms. To study effects of the cohesive laws in 

ductile failure, the cohesive law with constant maximum traction, Tmax, is used, as shown in Fig. 2,  

applied for studying the cohesive zone stiffness effect. The function can be written as, 
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In the cohesive law there are 4 parameters, the 

maximum traction ,Tmax; the separation for the 

initial linear hardening stage, 1; the separation 

for the end of the constant cohesive strength, 2, 

as well as the maximum separation for failure, 

0. 1 is introduced to vary the stiffness of the 

cohesive zone. The stiffness of the cohesive 

zone can be quantified by 

=Tmax/1.     (3) 

Systematic changes of 1 lead to various 

cohesive models. Should 1 vanish, the 

cohesive zone becomes rigid before reaching 

threshold, i.e.  becomes infinite, the cohesive 

law is discontinuous and contains a threshold 

value equal Tmax.  

The cohesive energy defined in equation (1) can be re-written as,  
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The cohesive energy consists of three parts which are defined as, 

sfcshd  .                                                                                                     (5) 

with the cohesive hardening energy denoting the first linear part, the cohesive constant energy for 

the constant part and the cohesive softening energy for the softening part, respectively, defined as 

   .
2

1
,,

2

1
20max12max1max   TTT sfcshd  

To quantify effects of the cohesive stiffness, the percentage parameter CHE is defined as,  

CHE=hd/ 

Obviously, for a stiffer cohesive zone CHE is small. For the rigid cohesive zone, CHE=0. For 

computational investigation we assume a fixed cohesive strength, 1000max T MPa, and the cohesive 

energy, =100N/mm. To ensure a same softening behavior for all cases, the cohesive softening 

energy (CSE) will also be fixed as sf=25% =25N/mm. CHE varies from 0 (the rigid cohesive 

zone) to very soft cohesive zone with hd=25% =25N/mm, i.e. the stiffness of the cohesive zone 

=20000MPa. 

The J2 flow plasticity is applied with Ramberg-Osgood hardening law as, 
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The material parameters is defined as Young's modulus E=80000MPa; Poisson's ratio =0.3; yield 

stress 0=250MPa; 1  and 10n . 

 
Figure 2. Cohesive laws applied for studying effects of 

the cohesive zone stiffness. All curves contain the same 

cohesive energy . 



4. Effects of the cohesive zone stiffness 

A compact tension specimen is  

computationally investigated under plane 

strain loading conditions with a constant 

cohesive energy. Fig. 3 shows the force vs. 

loading line displacement curves from the 

computations with various cohesive 

models. The cohesive hardening energy 

varies from 0 (the rigid cohesive zone) to 

25% (a very soft cohesive zone with the 

stiffness = E/4). Generally speaking, the 

stiffness of the cohesive law arises the 

specimen resistance and causes higher 

load. The results confirm, however, that 

the global reaction of the specimen is not 

so sensitive to the cohesive law. For 

CHE<10%, the load-load line 

displacement curves are numerically 

independent of variations of the cohesive 

law.  

 

  
Figure 4. 5  vs. loading line displacement for the various             Figure 5. Influence of the cohesive stiffness   

cohesive law stiffnesses.         to the fracture parameter 5. 

 

The crack tip opening displacement after Schwalbe et al., 5, is documented in Fig. 4 for various 

cohesive laws. With a softer cohesive law, the 5 value becomes larger, as learnt from the figure. 

Crack initiation approximately occurs at the loading VLL=1.5mm. With increasing loading, the 

discrepancy between computations grows. More quantified results are presented in Fig. 5. In the 

figure the deviation of the 5 value is summarized for VLL=1.5mm, 3mm, 4.5mm and 6mm, 

respectively. 5  of the rigid cohesive zone is taken as reference. It is clear that the deviation 

 
Figure 3. Load vs. loading line displacement for CT 

specimen using various cohesive laws. 



increase linearly with the CHE and decreased with crack propagation. For the cohesive stiffness 

E, the difference is below 5%.  

 

 
Figure 6. a vs. loading line displacement for the various             Figure 7. Influence of the cohesive stiffness   

cohesive law stiffnesses.         to the crack propagation a. 

 

The cohesive law influences crack propagation in computations. Fig. 6 shows crack growth vs. 

load line displacement using different cohesive zone stiffnesses. Significant differences of crack 

growth rate are illustrated in Fig. 6. A gentler cohesive stiffness, which means a higher cohesive 

hardening energy, leads to a more rapidly crack growth. It is similar to the 5 curves. More results 

are shown in Fig. 7 with crack propagation deviation as a function of load line displacement. The 

difference of crack growth a0 is taken from the rigid cohesive zone. The figure shows discrepancy 

as a function of the cohesive stiffness at three different loading stages: VLL=3mm, 4.5mm and 6mm. 

the results confirm that the predicted crack growth is very sensitive to the cohesive stiffness. For the 

case with the cohesive stiffness =E, the crack growth deviates more 35% from the rigid cohesive 

model. Generally, the soft cohesive zone model will delay crack propagation in comparing with the 

rigid cohesive zone model. 

 

5. The energy release rate of fracture at crack initiation 

In nonlinear fracture mechanics the energy release rate is introduced as a fracture parameter, which 

can be evaluated based on the J-integral. In FEM the J-integral will be calculated based on the 

virtual crack extension technique [18]. The fracture energy for crack initiation is the far field J-

integral. Application of the cohesive zone model is based on energy balance around the crack tip. 

One important question is the relation between  and Ji, the J-integral value at crack initiation. A 

common answer is =Ji [10,11,12].  

Recalling the difference in the cohesive zone modeling, the ductile fracture process should be 

considered in the ductile traction-separation curve, the cohesive law. During damaging the material 

around the cohesive zone is plastified and consuming mechanical energy. A crack increment is 

formed only if the separation reaches 0, as shown in Equation (2). The energy dissipation for 

generating a unit crack increment is the energy release rate. Since the cohesive zone model is 

describing a continuous damage process, the energy release rate may vary with the cohesive law. 



Figure 8 shows variations of the energy 

release rate at crack initiation, Ji, with the 

cohesive stiffness, by keeping constant cohesive 

strength Tmax. iJ  for all considered cohesive laws 

is larger than the cohesive energy , but 

decreases monotonically with hd. Since the 

cohesive strength is generally higher than yield 

stress of the bulk material. The plastic zone size 

decreases with hd. In the softening stage of the 

cohesive law, the bulk material around the crack 

tip will be elastically unloaded, it leads to plastic 

energy dissipation.  For a soft cohesive zone, the 

plastic dissipation energy is less than that for a 

rigid or hard cohesive zone. The fracture energy 

difference between a rigid cohesive zone and a 

cohesive zone with the stiffness equal =E is ca. 

5%. 

Additionally, the cohesive strength and the 

curve form may affect the fracture energy in 

crack simulation. To study effects of the cohesive law systematically, a polynomial cohesive law is 

defined as 
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The cohesive laws (2) and (7) are plotted in 

Fig. 9. All curves contain the same cohesive 

energy of =100N/mm. Two kinds of cohesive 

laws are studied here. The rigid cohesive zone 

model (2) contains a constant traction after 

cohesive zone initiation, whereas the other is a 

soft cohesive zone model (7). The cohesive 

strengths are assumed to be 20 and 50, 

respectively. 0 is determined for the constant 

cohesive energy. 

Figure 10 illustrates dependence of the 

fracture energy at crack initiation on the cohesive 

law. Only fracture energy release rate for crack 

initiation is considered. Each point in the figure 

is a independent computation. For the case with 

Tmax=0, the whole specimen is purely elastic and 

no plastic dissipation exists, i.e. Ji=.  

With higher Tmax, the plastic zone around the 

crack tip grows and elastic unloading becomes 

more severe. It follows larger plastic dissipation and higher fracture energy since a part of 

mechanical energy flow into plastification. For high enough maxT the plastic energy dissipation 

reaches a stable value since the plastic zone size becomes constant under given . The critical value 

 
Figure 8. The energy release rate at crack initiation 

as a function of the cohesive stiffness. 
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Figure 9. Different cohesive laws used for study 

fracture energy at crack initiation. 



for Tmax is approximately ca. 03  for both types 

of the cohesive laws, which is the most common 

cohesive strength taken in literature [9,19-22].  

Generally speaking, difference between the 

fracture energy and the cohesive energy is 

substantial. For Tmax>30, the deviations become 

stable and reach 30% for the rigid cohesive zone 

model and 40% for the polynomial soft cohesive 

zone model. The influence of the cohesive model 

to the fracture energy is not negligible. To 

perform a quantitative simulation of cracked 

specimen, one has to pay attention to postulate 

the cohesive energy. It is generally smaller than 

the fracture energy release rate for crack 

initiation.  

  

 

 

 

6. Conclusion 

In the present paper two fundamental problems about influence of the cohesive law have been 

studied from computational aspects: the function form and effects to the fracture energy balance. For 

this purpose a special cohesive element has been developed and implemented into the commercial 

FEM code ABAQUS.  Computational results confirm following conclusions: 

1. Effects of the cohesive zone model with stiffness larger than elasticity modulus (>E) are 

negligible in the load vs. load line displacement curve. However, influence to the fracture 

parameter, such as 5, is ca. 5%. The soft cohesive zone model generates higher 5 value.  

2. In prediction of the crack propagation amount the cohesive stiffness becomes more important. 

The a deviations among models for E reach 35%. To obtain a realistic crack propagation, 

one has to increase the stiffness of the cohesive zone. 

3. The fracture energy release rate from the cohesive zone model computation is not equal to the 

cohesive energy. The difference depends on the cohesive law and vanishes only in an elastic 

specimen. With increasing cohesive strength, the discrepancy between them grows and becomes 

stable for Tmax>30 under plane strain loading conditions. The maximum deviation exceeds 40%. 
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