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Abstract. This study analyzes the influence of microstructure properties on the extreme value 

distributions of the fatigue indicator parameter (FIP) corresponding to the multiaxial HCF Dang Van 

criterion. The following loading cases are considered: uniaxial loading, proportional and non-

proportional multiaxial loadings. The mesoscopic FIP determined from FE calculations on 2D 

polycrystalline synthetic aggregates using the ZeBuLoN code. The approach adopted in this work is 

to replace the RVE by random microstructure elements that can be considered as “statistical volume 

element” (SVE) [1]. A set of extreme values is constructed by determining the maximum value of 

the FIP for each SVE. The type of extreme value distribution is analyzed with a generalized extreme 

value function and is shown to follow a Gumbel type distribution. The shape factors of this 

distribution are compared for the different loading conditions. This comparison shows the 

limitations of the used criterion, especially in the case of multiaxial loadings. The effect of 

anisotropy on these distributions is finally investigated by comparing the results of two types of 

texture (isotropic and rolling). The introduction of a preferential texture reduces the shape factor and 

the criterion applied with the classic stress field becomes conservative, and also decreases the scatter 

parameter of the extreme value distributions of the FIP. 

 

Introduction 

In one literature, methods for determining the fatigue behavior based on multiscale modeling 

estimate that the fatigue strength depends on the extreme value  statistics of a single microstructure 

attribute [2] (for example inclusion size). This is only valid when the considered element of 

microstructure is a representative volume element (RVE). A RVE is the smallest volume element 

whose averaged behavior converges towards the macroscopic behavior material. Although the 

definition of the RVE is possible for some deterministic behavior aspects (such as elastoplastic 

behavior), it is difficult to evaluate an RVE for HCF behavior which is macroscopically highly 

dispersed. Therefore the use of extreme values of a single microstructure (lower than the RVE with 

regards to the fatigue behavior) does not take into account the contribution of the microstructural 

dispersion in the HCF response. To solve this issue, Liao [3] used the Monte Carlo method to create 

the statistical volume element (SVE) of a microstructure with a random distribution of grain sizes 

and orientations. Despite considering elastic behavior of crystal only, Liao showed a good 

correlation between the results obtained by modeling the extreme value probability with a Fréchet 

distribution and experimental results for 2024 aluminum alloy. Recently, McDowell et al. [1, 4] 

introduced a new framework taking into account the effects of neighborhood through the extreme 

values of the marked correlation functions [5] to quantify the influence of microstructure on the 
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fatigue limit and the contribution of interactions in the microstructure in the case of uniaxial loading. 

McDowell used the Gumbel distribution to describe the extreme value  probability of the studied 

parameters. 

The aim of this study is to analyze the influence of microstructure features (morphology and 

orientation) on the extreme value distributions of the Dang Van fatigue indicator parameter (FIP) 

under uniaxial and multiaxial loadings. The adopted approach is summarized in fig.1. 

 

 
Fig.1. Schematic representation of the approach adopted in this study 

 

Numerical model 

Material behaviour. The model material considered in this work is pure copper. The face-centered 

cubic crystal structure reduces the computation time because of the reduced number of slip systems 

(12 <111> {110} slip systems on a fcc structure). The behavior is modeled by cubic elasticity and 

crystal plasticity constitutive law. The cubic elasticity constants are GPaC 15911  , 

GPaC 9.12112   and GPaC 9.8044   (Voigt notation). The crystal plasticity model used in this 

work is the one introduced by Meric and Cailletaud [6]. The constitutive relations are defined in 

Table 1. 

 

Table 1. Constitutive relations of the crystal plasticity behavior  
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s  and s  respectively represent the plastic slip and the resolved shear stress of the slip system s . 

These two variables are related to the stress and plastic strain tensors by the following relations: 
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The material parameters  nsMPaK /1. , n ,  MPar0 ,  MPaQ , b ,  MPac  and d  and the interaction 

matrix components have been identified on a high purity copper [7]. They are presented in Table 2. 

 

Table 2. Material parameters of pure copper from [7] 
 

K  n  
0r  Q  b  c  d  

0h  1h  2h  3h  4h  5h  

8 20 15 4 12 32000 900 1 1 0.2 90 3 2.5 

 

Equiaxed morphology modeling. The simulations performed in this work used a 2D periodic 

microstructure following the procedure presented in [8]. To have a reasonable computation time, 

each computed SVE contain 200 equiaxed grains and 160 elements /grain in average. The 

microstructure and the mesh are periodic along the two axes. The polycrystalline aggregates here 

after were subjected to cyclic loading levels corresponding to the median experimental fatigue 

strength at 10
7
 cycles of pure copper determined by Lukas et al. [9]. To determine the combined 

loading levels equivalent to the fatigue strength at 10
7
 cycles, the Crossland criterion [10] was used. 

The fatigue limits used in this study are shown in Table 3. The loading ratio is 

1/ maxmin R , and in the case of the combined tension-torsion loading, the biaxiality ratio is 

1/  aa T . Computations were performed under imposed mean stress loading conditions and 

periodic displacement on the contour of the aggregate. The calculations were performed for 10 

cycles using ZeBuLoN FE code. It was assumed that the macroscopic and mesoscopic behaviors are 

almost stabilized at the end of the tenth cycle. 

 

Table 3. Macroscopic tension and shear stress amplitudes used for the different loading conditions 
 

 Tension (TE) Torsion (TO) Tension-Torsion (TT0, TT45, TT90) 

 MPaa  56 0 30 

 MPaTa  0 36 30 

 

Crystallographic texture and anisotropy. In the present work, the grain shape is fixed (equiaxed) 

and were two types of texture investigated. First, an isotropic material was considered. The 

computed grain orientation sets were obtained by random samplings of 200 crystal orientations 

among the possible orientations in Euler space defined by three angles ( 1 , , 2 ). Secondly, a 

textured material was considered. The random samplings were made from the marked orientations 

of an experimental rolling texture. These marked orientations correspond to different orientations of 

the   fiber developed by deformation during the rolling process. Examples of the generated {100}, 

{110} and {111} pole figures for (a) isotropic and (b) anisotropic microstructure are given in Fig.2. 

 



(a) Untextured microstructure (b) Textured microstructure (  fiber) 

 
           {100}                    {110}                     {111} 

 
               {100}                     {110}                    {111} 

 

Fig.2. {100}, {110} and {111} stereographic pole figures of computed microstructures in the 

case of (a) untextured and (b) textured microstructure (x1 is a transverse direction and x2 is a rolling 

direction). 
 

Dang Van Fatigue indicator parameter 

The stress based critical plane Dang Van fatigue criterion [11] was chosen as it is largely used in the 

literature. It has given rise to several developments [12, 13] of meso-macro HCF criteria. It was 

developed in a homogeneous continuum medium mechanics framework considering an elastic 

shakedown hypothesis. The critical plane is determined from all the possible planes. In this study the 

Dang Van criterion is computed for each grain considering its local stress state (obtained by FE 

computation) and its orientation. The planes and the directions on which the criterion is evaluated 

correspond to the slip systems of the grain. The formulation introduces an equivalent stress (also 

known as fatigue indicator parameter FIP): 
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where  thyd  is the hydrostatic stress,  ts

r  is the resolved shear stress recentered (using the 

circumscribed circle method) for the slip system s . The threshold value th

DVI  of DVI  and the 
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where 1f  and 1t  are respectively the fatigue strength at 10
7
 cycles in terms of fully reversed tensile 

and shear stress [9]. The material parameters determination from the macroscopic experimental 

results of the tests is disputable. The Fig.3 illustrates the mesoscopic loading path in the sense of 

Dang Van criterion (with MPaI th

DV 15.36  determined experimentally) for the five loading cases. 
 

 TE TO TT0° TT45° TT90° 

(a) 

     

(b) 

     

Fig.3. Mesoscopic loading path in the Dang Van space (    tt s

hyd  , ) at the tenth cycle (with 

FE and polycrystal plasticity in gray dots and acending to the classical continuum mechanics in 

black dots) for (a) untextured and (b) textured microstructure. 



The assumption used in the Dang Van criterion for meso-macro scale changement (Lin-Taylor 

hypothesis with the same macro and meso isotropic elastic behavior) leads to the equality between 

mesoscopic and macroscopic hydrostatic stress [11]. But Fig.3 shows a large scatter of hydrostatic 

stress at the grain scale. The results obtained for the textured and untextured cases show 

considerable variation of hydrostatic stress from one grain to another. Furthermore, the authors have 

shown [14] that the main difference between the continuum approach and the crystal plasticity 

approach used in this work is in the elastic anisotropy of grains. Moreover, for the same imposed 

macroscopic stress, the introduction of a preferential orientation (texture) decreases the scatter of the 

load paths. The greatest mesoscopic equivalent Dang Van stress is slightly reduced too. Note that for 

all the investigated load cases the critical paths are symmetric with regard to an average shear stress 

because plasticity is low and the residual stresses are negligible. 

In the following, the fatigue strengths at 10
7
 cycles at the mesoscopic scale are computed by 

considering the critical grain. These mesoscopic quantities are very sensitive to the grain 

morphology and orientation in the polycrystalline aggregate. They are located in the tail 

distributions (see Fig.4). One way to study the distribution of these quantities and the microstructure 

effect on the variability of these quantities is to use the extreme value probability. As done by 

Przybyla et al. [1] the database constructed by a lot of numerical simulations on several SVE allows 

the authors to build the statistical distribution of the fatigue indicator parameter (FIP). The SVE 

gives the grain exhibiting the highest FIP (extreme value). 

 
Fig.4. Localization of the extreme values in the tails of the Dang Van FIP distribution. 

Probabilistic framework and extreme value probability 

Let us consider a random variable x  with the distribution function  xFX . The n  extreme 

realizations in n  samples of the random variable can be defined as: 

 nn XXXY ,...,,max 21          (5) 

The distribution function of nY  is defined as: 
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The extreme value theorem is similar to the Central Limit Theorem (CLT) reported in the sum of a 

series of random variables with same expected value and same variance that converges to a normal 

distribution. 

According to the Fisher-Tippet theorem, if there exist two real normalizing sequences  
1nna >0 and 

 
1nnb and a non-degenerate distribution (not reduced to a point) G  such that : 

   xGbxaFx
a

bY
P

n

nn

n

n

nn

















       (7) 

G  is necessarily one of three types of distributions: Fréchet, Weibull or Gumbel. 

IDV  [MPa] 



Jenkinson [15] combined the three limit distributions in a single parametric form called Generalized 

Extreme Value (GEV) distribution depending on a single parameter  : 
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The   parameter is called extreme index. Its sign indicates the type of asymptotic distribution: 

Weibull ( 0 ), Gumbel ( 0 ) or Fréchet ( 0 ). The variable   nnn abY   is called normalized 

maximum of the random variable x . nb  is considered as the average of the extreme value 

distribution whereas nas   is similar to the standard deviation as a measure of the dispersion of this 

distribution. These parameters are also called shape factors of the distribution. 
 

The first step in the application of the extreme value probability consists in determining the type of 

attraction domain (AD) of the studied distribution: Gumbel, Fréchet or Weibull. Testing Quantile-

Quantile plot graph (QQplot) can indicate qualitatively the type of attraction domain [14]. There are 

not many testing hypothesis to study the attraction domain of extreme value distributions, only one 

test was found in the literature: the ET test for the AD (Gumbel) [16]. To answer the question: “what 

is the extreme value distribution of the considered fatigue indicator parameter (FIP)”, we used the 

GEV distribution. The extreme index   is computed with the two shape factors of the distribution 

(  and s ) with the maximum likelihood method. 
 

Finally, the database of extreme values was constructed in this work by determining the maximum 

value of the Dang Van FIP for each SVE (see Fig.1). Initially 80 samplings of SVE were performed 

as the combination of 8 random morphologies (equiaxed grains) and 10 random crystallographic 

orientations. Then after determining the minimum number of samplings that is sufficient to obtain a 

stabilized extreme value distribution function, in the second part of the study, the influence of the 

texture was studied with 25 SVE only (obtained by the combination of 5 morphologies and 5 

crystallographic orientations sampled randomly from an experimental rolling texture). Due to the 

introduction of this anisotropy, two cases are considered according to the tensile axis: (i) the case of 

textured microstructure with tensile direction along x1 axis and (ii) the case of textured 

microstructure with tensile direction along x2 axis. 

 

Results and discussions 

After identifying the various parameters of the GEV with the maximum likelihood method with a 

confidence interval of 99%, we noticed that for all the studied cases (untextured and textured 

microstructure with tension along x1 or x2 directions) and for the five loading cases, the average 

value of extreme index was very close to zero with intervals containing always zero (bounded by the 

minimum and maximum values). An example of the range of this parameter and the two shape 

factors is illustrated in Fig.5 with two probability density functions and associated cumulative 

probability. Consequently, the Gumbel distribution function is the most suitable to reproduce the 

extreme value distributions of the Dang Van FIP. 



 
  )(MPa  )(MPas  

moy  min max moy  min max moy  min max 

-0.076  -0.334 0.182 39.61 39.19 40.02 1.24 0.97 1.59 
 

Fig.5. Probability density and cumulative probability determined with the maximum likelihood 

method (for the risk 01.0 ) from the extreme values of the Dang Van FIP in tension ( 1R ). 

To evaluate the sensitivity of the fatigue limit to the microstructure variability and to determine the 

texture effect, three typical microstructures are studied: untextured, textured with tension in the 

transverse direction x1 and textured with tension in the rolling direction x2. In all cases, the shape 

factors of the Gumbel extreme value distributions of the Dang Van FIP, DVI , were computed and 

analyzed. 

 

Fig.6. Shape factors )(MPa  (symbols) and )(MPas  (vertical bars) of the extreme value 

distributions of the Dang Van FIP, DVI , for the five loading cases. 

The introduction of a preferential texture reduces the parameter s  (similar to the standard deviation) 

compared to the case of an isotropic texture for the five loading cases. This is explained by the 

mesoscopic stresses which are less heterogeneous due to the dominant orientations. Concerning the 

shape factor   (similar to the average), for the five loading configurations this parameter exceeds 

the experimental macroscopic Dang Van criterion in the untextured microstructure case 

( MPaI th

DV 15.36  dotted line in Fig. 6). However, in the textured microstructure case, the 

macroscopic criterion is respected for simple and biaxial loadings. The symetry property of the 

orthotropic texture justifies that loading with a tensile direction in x1 or x2 give the same shape 

factors of the extreme value distribution. 

In general, the introduction of a preferential texture has translated the shape factor of the Gumbel 

distribution to the bottom for the five load cases studied. This discrepancy may be due to the 

decrease in mesoscopic stresses coming from the deformation compatibility between neighboring 

grains resulting from the preferred orientations. However, this does not justify the decrease 



compared to the macroscopic criterion excepted when the slip plane orientations given by the 

preferred orientations (corresponding to the   fiber orientations) do not coincide for all the loading 

cases with plane orientations that maximizes the Dang Van FIP. Finally, in the experimental results 

of the literature, the macroscopic Dang Van criterion (based on continuum mechanics approach) is 

often more conservative in the case of simple loadings than under biaxial loadings. The adaptation 

of this criterion at the mesoscopic scale (crystal plasticity approach) shows that it is more 

conservative for combined tension-torsion loadings and even more conservative when the phase 

shift increases. 

 

Conclusions and prospects 

In this study, we constructed a database of extreme values of the Dang Van FIP. This database 

results from the FE simulations using several SVE (with 200 equiaxed grains randomly oriented and 

then respecting an experimental rolling texture). The application of this approach based on crystal 

plasticity coupled with probabilistic methods to study the distribution tails aims to analyze the 

sensitivity of the critical FIP to the microstructure features (morphology and texture) of pure copper. 

It has been shown that the extreme value distributions of the Dang Van FIP can be adequately 

represented by the Gumbel distribution. The identification of these distributions revealed that the 

experimental macroscopic fatigue parameters are not adequate at the mesoscopic scale. Indeed the 

shape factor   (similar to the average) is always greater than the experimental median Dang Van 

threshold for the five loading configurations in the case of an equiaxed morphology and random 

texture. The introduction of a preferential texture reduces the shape factor and the criterion applied 

with the classic stress field (continuum mechanics) becomes conservative, and also decreases the 

dispersion parameter s . The use of a textured microstructure decreases the misorientation between 

grains. The stresses at the critical grain are reduced and the stress heterogeneity too. Consequently, 

the shape parameter of the extreme value distribution is decreased. This decreasing compared to the 

experimental macroscopic median threshold may be due to the incomplete representation of the 

Dang Van critical planes caused by the adaptation of this criterion at the mesoscopic scale. 
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