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Abstract. The evaluation of crack initiation, short crack growth as well as crack path at microscopic 

scale are crucial issues for the safety assessment of macroscopically fracture-free structural 

components.  In the present paper, the crack propagation at the material microscale is modelled by 

taking into account the spatial variability of mechanical characteristics of the material as well as the 

local multiaxial stress field disturbance induced by properly-defined equivalent inclusions.  By 

adopting some crack extension criteria under mixed mode, the short crack path is determined.  A 

strong microstructure dependence of the crack path arises in the short-crack regime, while the 

microstructure of the material does not influence the crack propagation for sufficiently long cracks. 

An average equivalent SIF is computed for kinked short cracks, and a law to estimate the fatigue 

crack growth rate is proposed. 

 
Introduction 
The evaluation of fatigue crack growth at small scale, that is, when the crack size is comparable with 

a characteristic length of the material (e.g. grain size in metallic materials), is still an open problem. 

In this context, the crack propagation in a inhomogeneous material is assumed to depend on the 

mechanical barriers to the crack growth produced by the microstructure.  Moreover, the plastic zone 

size at crack tip at small scale is comparable with the crack size, leading to the violation of the 

small-scale yielding hypothesis.  A simple way to take into account the effects of the material 

microstructure on the crack growth at small scale [1] consists in using the non-uniform stress field 

induced by embedded inohomogeneities: in fact, even for a uniform remote stress applied to the 

structural component, an oscillating stress field might develop at the microscale. 

In the present paper, by superimposing the solution of a homogeneous elastic infinite plate to that of 

a circular elastic inclusion, the stress field in the case of several non-interacting inclusions is 

determined, and the corresponding mixed mode Stress Intensity Factors (SIFs) are computed.  Crack 

paths under static loading are evaluated by applying both the maximum principal stress criterion [2, 

3] and the minimum plastic zone extension criterion (R-criterion, [4, 5]).  The trajectory described 

by the crack tip is deduced through an incremental method, where the Mode I and Mode II SIFs of 

the kinked crack are approximately evaluated as a function of the SIFs related to a projected straight 

crack.  An equivalent mean weighted Mode I SIF (useful for fatigue crack assessment) in such cases 

is also determined.  Finally, some examples related to metallic alloys are examined.  It is shown that 

small-scale fluctuations of the stress field heavily affect the crack paths for short cracks, while such 

an influence disappears for sufficiently long cracks after reaching a transition point during the crack 

propagation process.  Further, the equivalent SIF is strongly affected by the material microstructure 

for short cracks, while it tends to the case of homogeneous materials for long cracks. 

 



Stress Field at the Microscale due to Material Inhomogeneities 

Structural materials are always characterized by heterogeneities at the mesoscale or microscale, due 

to either the multiphase nature of the materials (such as for composite materials) or unavoidable 

inhomogeneities (such as in metallic alloys composed by a base material and secondary inclusions).  

Because of the above heterogeneous microstructure, the stress field at such a scale might be non-

uniform and multiaxial even if a uniaxial uniform remote stress is applied.   

 
Fig. 1. Circular elastic inclusion in an 

infinite elastic plate under remote uniform 

tensile stress y0 . 

It is worth noting that a local fluctuation of the 

microstress field can heavily influence the crack 

paths for flaws with length comparable to the 

characteristic material length. 

The modelling rationale here adopted to describe 

the inhomogeneities contained in the material is 

based on a periodic distribution of spherical 

particles embedded in the base material. 

By considering a single inclusion (material 2) of 

radius R  embedded in an infinite plate (material 1) 

under remote uniform stress (Fig. 1), the elastic 

stress field can be determined by applying the 

superposition principle together with the Kirsch 

solution [6]. The resulting stress field, xyyx   ,  , , 

is uniform within the inclusion, and can be 

expressed through the remote stress y0  as follows: 

 

0   ,    , 00  xyyyyyxx kk   (1) 

By assuming the x-y coordinate system origin in the inclusion centre (Fig. 1), the stress field 

components xyyx  ,,  in the region around the inclusion (point P in Fig. 1) can be expressed as 

follows under plane stress condition [6]: 
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where the coefficients yx kk ,  can be obtained from the knowledge of the elastic constants of the base 

material ( 11,E ) and of the inclusion ( 22 ,E ) (by setting  2
11 c , 4222 /)23(8 ryRyF    

and 642 /24 ryRG  ) [6]: 
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(3) 

The elastic stress field in such heterogeneous materials can be approximately computed by using the 



 
 

Fig. 2. Equally-spaced circular inclusions in an infinite domain 

arranged in a hexagonal cell pattern having characteristic size 

d , under remote uniform tensile stress y0 . 

single inclusion solution and the 

superposition principle, provided that 

the inclusions are assumed to be non-

interacting (as reasonably occuring for 

widely spaced inclusions). 

By considering point P belonging to 

the base material (Fig. 2), the resulting 

stress field is approximately determined 

by summing up the effects of the 

inclusions (such as particles 1, 2, 3, 4, 

etc., Fig. 2): 
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where the cartesian stress components  

),( )()()( PiPixi r  , )),(( 0)()()( yPiPiyi r   , ),( )()()( PiPixyi r   indicate the stress fluctuations evaluated 

in P in an elastic infinite plate containing a single inclusion i  ( ,.....4,3,2,1i ), under the remote 

stress y0 . The summation in Eq. (4) must be performed by taking into account all the inclusions 

that are within a significant influence region around the point P under consideration, and neglecting 

the inclusions at a large distance from P.  Figure 3 shows the stress fluctuations along different lines 

and for regular hexagonal lattice arrangement of particles. 
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Fig. 3. Dimensionless stresses along a horizontal straight path (dashed line) located at (a) e/h=1/2, (b) 

e/h=1/4 and (c) e/h=1/5 distance between two lines of inclusions ( md 41034.2  ), in an infinite plate 

under remote tensile stress y0 .  Dots indicate the positions of inclusions in the material. 
 

 

 

 

Approximate SIFs in Nominally-Mode I Kinked Crack 

The SIF of a straight crack (in an infinite plate) with length 2l, normal to the uniform remote stress 

y0  direction, is  lK yI 0
)(



. A generic stress influenced by the inclusions (Eqs 2-4) can be 

decomposed in a remote uniform uniaxial stress y0  and a fluctuating multiaxial stress field )(
~

xT  

here assumed to be a one-dimensional function of the x  coordinate.  The stress field given by )(
~

xT  

is a self-balanced microstress field, characterized by a material length d  (inclusion spacing), with 



two non-zero stress components ay dxf  ~)/(~~   and axy dxf  ~)/(~~  , whereas x~  is 

assumed to be negligible.  For the sake of simplicity, we assume the function  dxf /  to be 

approximate through a Fourier series, i.e.    dxdxf 2cos/   (Fig. 4a).  Under the self-balanced 

microstresses ~  and ~ , the SIFs (of the projected crack) are computed using the superposition 

principle: 
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(5) 

where J0 is the zero-order Bessel function [7]. 

 
 

Fig. 4. Self-balanced microstresses (a) and periodically kinked crack in an infinite plate (b). 

 

 

In LEFM, the total SIFs are simply the sums of the two contributions due to the remote and 

microstress fields, that is: 

IIIIIIIII KKKKKK
~

,
~ )()(    (6) 

In such a self-balanced microstress field, it can be reasonably assumed that the crack kinks (due to 

the mixed mode of fracture) symmetrically with respect to the Y-axis and at each material 

microstructure semi-period, i.e. at each reversal in the microstress spatial courses. In the case of a 

singly-kinked crack (of projected crack length l2 ), the SIFs at the tips of the inclined part of the 

crack can be expressed through the SIFs IK  and IIK  of a straight crack of length equal to the 

projected length of the kinked crack [8, 9]: 
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where ija  are coefficients depending on the slant angle   (positive counter-clockwise for tip 

coordinate x > 0) and the length ratio ab  between the deflected leading segment and the horizontal 

trailing (preceding) segment (Fig. 4b).  For other geometries, the SIFs defined with respect to the 

projected crack would change, but not the expressions in Eq. (7). 

The coefficients ija  for ab  (and, with good approximation, also for 3.0ab ) are [8]: 
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Note that the local SIFs in Eqs 7 and 8 are equal to those of an inclined straight crack of projected 

semi-length l  forming an angle  2  with respect to the loading axis [8] (Fig. 5). 

 
Fig. 5. Infinite cracked plate with an 

inclined crack under remote tension y0 . 

It can be reasonably assumed that, as the crack 

propagates following the path in Fig. 4a, only its latter 

deflection influences the stress field near the crack tips 

(for example, along the straight segment 2-3 in Fig. 4a, 

the deflection point 2 has an effect, while the deflection 

point 1 does not have).  The local SIFs at the crack tip 

are assumed to be expressed by Eqs 7 and 8 for 

deflected (Mode I+II) segments (see the segments 1-2 

and 21   in Fig. 4b). 

The approximate computation is thus based on the 

assumption that the near-tip stress field depends on the 

local crack direction at the crack tip. 

 
Weighted Average SIF for Nominally-Mode I Kinked Crack 

By means of the local Mode I and Mode II SIFs, an equivalent Mode I SIF eqk  can be defined 

through energetic considerations [3], namely: 
22

IIIeq kkk   (9) 

and, after substituting Eqs (7, 8) in Eq. (9), we get: 
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For a nominally Mode I crack (submitted to a remote Mode I loading) in an infinite plate under 

constant amplitude cyclic loading, by exploiting the superposition principle, the SIF ranges related 

to the projected crack of semi-length l, can be written as follows [7]: 
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where the microstress field is assumed to vary in time proportionally to the remote stress. 

Under remote Mode I loading and local shear microstress field, cracks “on average” propagate 

normal to the loading axis, following a zig-zag pattern. It can be easily shown that the crack slanting 

angle, )/( dl  , decreases as the crack length increases with respect to the material 

microstructural length d. 

A mean weighted value eqIK ,  of the equivalent SIF range eqk  along the straight segments (the 

crack path is assumed to be a repetitive pattern constituted by n segments) is defined as follows: 

n

n

i

ieqiineqI sksssK /)()(
1

,1, 







 



  (12) 



where ieqk ,  (Eq. 10)  is the equivalent SIF value along the straight segment of length )( 1 ii ss ,  s 

being the curvilinear coordinate along the crack path. In the particular case of   constant we get: 
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Crack Propagation Criteria for Mixed Mode 

The kinked pattern of a crack embedded in the microstress field above described can be analysed by 

adopting a mixed-mode crack propagation criterion.  Several criteria for both stable and unstable 

crack propagation have been proposed for different materials. According to the MTS-criterion 

(Maximum Tensile Stress) by Erdogan and Sih [2, 3], the crack grows in the direction normal to the 

maximum principal stress (  ) direction or, equivalently, parallel to the maximum tangential stress: 
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where the polar coordinate   is used to identify the position vector with respect to the crack tip 

direction (Fig. 4b).  Others criteria have been proposed: for instance, the zero shear stress criterion 

by Maiti et al. [10], the M-criterion by Kong et al. [11] (based on the maximum stress triaxiality 

ratio eqHM  / , where H  is the hydrostatic stress and eq  is an equivalent stress such as the 

Von Mises stress), the maximum dilatational strain energy density criterion (T-criterion, Theocaris 

et al. [12]). 

From experimental tests, it has been observed that the crack propagation direction usually tends to 

follow the local or global minimum extension of the plastic core region, i.e. the crack tends to reach 

the elastic region of the material outside the plastic zone developed around the crack tip.  On this 

basis, the crack is assumed to follow the “easiest” path to reach the elastic region, that is, it tends to 

choose the shortest path from the crack tip to the elastic material outside the plastic zone.  This path 

corresponds to the minimum plastic work needed to create a new portion of crack area.  The so-

called R-criterion (Shafique et al. [4, 5]) accomplishes such a hypothesis and can be written as 

follows: 
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where pR  is the function which defines the radial distance from the crack tip to a generic point of 

the plastic zone boundary 0),( 21 JIF  ( 1I , 2J  are first invariant of stress tensor and second 

invariant of deviatoric stress tensor, respectively). 

 

Short Crack Example 

Some of the above described models for the assessment of the crack propagation at the microscale 

and the evaluation of the mean weighted SIF is herein applied to a carbon steel D6ac whose 

composition and mechanical parameters are presented in Tab. 1. 

 
Tab. 1. Physical and mechanical parameters of the main elements in a carbon steel D6ac 

 Element 
volume 

fraction 
Mass density 

Young 

modulus 

Poisson’s 

ratio 

Thermal expansion 

coeff. 

    [%]   [kg/m3] E [Gpa]     [K-1]

Iron Fe ~ 98.00 7870 200 0.29 1.20E-05 



Molibden Mb ~ 1.05 10220 330 0.38 5.35E-06 

Cromium Cr ~ 1.05 7190 248 0.30 6.20E-06 
 

Tab. 2. Mean physical and mechanical parameters of the base material and the equivalent inclusion for 

the carbon steel D6ac 

 Element 
volume 

fraction 
Mass density 

Young 

modulus 

Poisson’s 

ratio 

Thermal expansion 

coeff. 

    [%]   [kg/m3] E [GPa]    [K-1]

Base material Fe ~ 98.00 7870 200 0.29 1.20E-05 

Equivalent 

inclusion 
-- ~ 2.10 8705 289 0.34 5.78E-06 
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Fig. 6. (a) Path of an initially straight crack developing between two lines of inclusions in an 

infinite plate under remote uniform tensile stress y0 .  Detail of the crack path at the microscale 

for  (b) e/h= 1/2, (c) e/h=1/4, (d) e/h=1/5 (the distribution of inclusions is shown). 
 
 

The mean weighted values of the physical and mechanical parameters of the secondary constituents, 

reduced to a single equivalent inclusion, are reported in Tab. 2. 

The case of an initially cracked infinite plate under remote uniform tension y0 , with a straight 

crack normal to the applied stress, is herein examined.  By using the equivalent inclusion volume 

fraction (Tab. 2) and considering an average inclusion diameter equal to about m20  (e.g. see Ref. 

[13]), an inclusion spacing hd   equal to about m234  can be computed for a regular hexagonal 

distribution of inclusions (Fig. 2).  The static crack extension is determined by applying the above 

described Erdogan-Sih criterion and the R-criterion and using the mixed mode SIFs based on the 

remote stress y0  (the local fluctuation of the stress component y  is negligible, as is shown in 

Fig. 3) and the shear microstress fluctuations ~ .  In Fig. 6, the crack paths estimated for an initially 

straight crack located at 2/1/ he  (Fig. 6b, 0026.0/~
0 ya  ), 4/1/ he  (Fig. 6c, 

0059.0/~
0 ya  ) and 5/1/ he  (Fig. 6d, 0085.0/~

0 ya  ) are plotted.  The crack paths 

evaluated by such two criteria are similar, but the R-criterion produces a slight crack path deviation 

since the plastic zone shape is influenced in a complex way by the Mode I and Mode II SIFs  which 

continuously change during the whole process of crack propagation. 
 

Figure 7 shows the mean weighted equivalent SIF eqIK ,  (see Eq. 12) against the dimensionless 

projected crack length dl / , for different position of the nominal horizontal crack line with respect 

to the inclusion arrangement.  It can be observed that each curve tends to the slope 1/2 for long 



cracks as in the case of a smooth straight crack, whereas such a ratio decreases for short cracks.  In 

other words, the equivalent SIF can be written as 2/

,

w

eqI lCK  , with 1w  for 1/ dl  and 1w  

for high values of the dl /  ratio. 
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Fig. 7.  Equivalent weighted average SIF for a nominally Mode I crack located at  (a) 2/1/ he , 

(b) 4/1/ he , and (c) 5/1/ he . 
 

 

Conclusions 

In the present paper, a simple analytical model to assess the microstress variation due to material 

inhomogeneities and the corresponding trajectory of a propagating crack is proposed.  In the case of 

metals, the inhomogeneities are treated by considering a two-phase material with an equivalent 

mean inclusion (characterized by a regular spatial distribution) responsible for a multiaxial 

fluctuating stress field which determines a mixed-mode crack propagation. 

By adopting different mixed-mode crack growth criteria, the crack path can be deduced to depend 

on the main features of the material microstructure, here accounted in terms of an appropriate 

microstress field.  It is shown that both the maximum principal stress criterion and the R-criterion 

(based on the minimum extension of the core plastic zone) evaluate a zig-zag crack pattern, 

characterised by a length scale related to both the volume fraction of inclusions and their mean size. 

A strong dependence of the crack path on the material microstructure is observed in the short crack 

regime.  Moreover, by introducing a mean weighted equivalent SIF, the exponent of the equivalent 

SIF against crack length curves is shown to be smaller than 1/2, for crack lengths comparable with 

the inclusion spacing in the base material. 
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