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Abstract. The main interest of the present work is related to the influence of material 
inhomogeneities, such as cracks and material non-homogeneous constants, on the stress-strain state 
in the vicinity of the interface in a bimaterial consisting of a functionally graded material (FGM) and 
a homogeneous material subjected to a heat flux applied at infinity. It is assumed that thermo-
mechanical properties of the FGM are continuous functions of the thickness coordinate. The FGM 
thermoelastic constants are supposed to have exponential form and Poisson’s ratio is assumed to be 
constant. The uncoupled, quasi-static thermoelastic theory is applicable to this problem so that the 
solution consists of the determination of the temperature distribution, and the determination of the 
thermal stresses. The method of the solution is based on the superposition technique and Fourier 
transform method and leads to singular integral equations. Some fundamental solutions of the 
problem for some special cases are obtained. Numerical solutions of the singular integral equations 
can performed for more general cases by the mechanical quadrature method and can be performed to 
typical material combinations. 

Introduction 

FGMs are often used as thermal barrier coatings in different engineering structures and are tailored 
so that to decrease bimaterial mismatch and residual stresses at the interface and prevent 
delamination, debonding along the interface. Meanwhile, experimental observations show that cracks 
and defects usually initiate and grow near interfaces (see a review by Noda [1]). These defects are 
the cause of additional residual stresses near the interface. In this connection in the present work it is 
studied the thermal fracture of a FGM/homogeneous bimaterial with internal and interface cracks. It 
is assumed that thermo-mechanical properties of FGMs are continuous functions of the thickness 
coordinate. To make the problem mathematically tractable, the FGM constants are supposed to have 
exponential form. In [2] it was shown that the effect of the Poisson’s ratio on the SIFs is negligible. 
Thus it will be assumed that Poisson’s ratio is constant.  

Different aspects of deformation and fracture investigations of FGMs can be found in the 
literature, theoretical semi-analytical studies [1-3] and numerical simulations [4]. A general solution 
of a single and multiple arbitrarily orientated cracks embedded in a non-homogeneous infinite plate 
under mechanical loading was obtained in paper by Shbeeb et al. [3]. It was assumed that the FGMs 
have a constant Poisson’s ratio and the shear modulus is of an exponential form. The work by Wang 
et al. [5] is devoted to multiple cracks problems in the FGMs with arbitrarily varying material 
properties. The algorithm was applied to steady state or transient thermoelastic fracture problems. A 
laminated composite plate model was used to simulate the material non-homogeneity. In the paper by 
Guo and Noda [6] a new model, piecewise- exponential model, is proposed to realize the fracture 
mechanics investigations of the FGMs with arbitrary properties. In this model the FGM is divided 
into some non-homogeneous layers along the gradient direction of the properties. By using this 
model the fracture problem of a functionally graded strip with arbitrarily distributed properties and a 
crack vertical to the free surfaces is studied. The review of the crack problems in FGMs also can be 
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found in this paper [6]. In spite of a lot of literature on the fracture of FGMs many problems of crack 
interactions remain unsolved, especially in the case of thermal loading. 

The main interest of the present work is on the influence of material inhomogeneities, such as 
cracks and material non-homogeneous constants, on the stress-strain state in the vicinity of the 
interface in FGM/homogeneous bimaterial subjected by a heat flux.  

Statement of the Problem 

Let us consider a bimaterial composed of a functionally graded material FGM (denoted by number 1) 
located at the upper half plane and an homogeneous material (denoted by number 2) located at the 
lower half plane. The bimaterial is perfectly bonded with the exception of an interface crack of length 
2a0. The FGM contains N cracks of length 2ak. The bimaterial is subjected to a remote heat flux of 
intensity q (Fig. 1). That is no mechanical forces are applied, only thermal heat flux. The cracks are 
supposed to be thermo-isolated. 

The coordinate system (x, y) is introduced with the x-axis lied along the interface line. The local 
coordinate system (xk, yk) is attached to the internal crack. The crack position is determined by the 
defect midpoint coordinate ),( 00

kk yx  and an inclination angle kθ  of the crack to the interface, i.e. to 
the x-axis (Fig. 1). It is supposed that all properties of FG material depend only on coordinate y. 
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Fig. 1. The geometry of the problem. 
  

The uncoupled, quasi-static thermoelastic theory is applicable to this problem so that the solution 
consists of the determination of the temperature distribution and the determination of the thermal 
stresses.  

According to the principal superposition, the problem is equal to the superposition of the 
following two sub-problems: (a) The bimaterial without crack is subjected to remote heat flux, and 
the heart flux induced at the location x=0 is q(y). (b) The bimaterial with crack is free of remote 
fluxes and only the crack faces are subjected by heart fluxes of intensity –q(y). The analogous 
superposition scheme is applied to the thermoelastic problem. The problem (a) is a homogeneous 
problem of thermo-conductivity and it is not contributed to the singular fields at the crack tips. 
Problem (b) is called perturbation problem and it governs the singular crack-tip fields. In fracture 
mechanics the behavior of the singular crack-tip fields are important and considered firstly. In the 
following only perturbation problem will be analyzed.   

The material properties of the FGM can be expressed as follows. The thermal conductivity 
coefficient is 

 
yekyk δ

01 )( = ,           (1) 
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where constant k0 is the thermal conductivity of the interface and for material (2) and δ  is the non-
homogeneity parameter for the FGM. The Young’s modulus and the thermal expansion coefficient 
can be expressed as  

yy eeEyE γβ αα 0101 ,)( == .         (2) 
 
Here 00 ,αE  are corresponding constants of homogeneous material (2) and γβ ,  are non-
homogeneity parameters for FGM. In [2] it was shown that Poisson’s ratio has not much effect on 
the solution so that we will assume further jν = const (j=1,2).  

The relation between global coordinates (x,y) and local coordinate systems (xk,yk) can be written 
in complex form as follows  

 
ki

kk ezzz θ+= 0 , 

where  kkk iyxziyxz +=+=  and . 000
kkk iyxz +=  is the origin coordinate of the system (xk,yk) in the 

global system. At the same time it is the coordinate of the midpoint of the crack. 
In the local coordinate system connected with each arbitrary oriented crack the constant k1 has the 

form 
kkk yxy

kk eekyxk 21
0

01 ),( δδδ += , 
where  

kk θδδθδδ cos,sin 21 == . 
 

The same expressions are written for the other constants. 
 
Thermal problem. Let the temperature field in the bimaterial with cracks be denoted as *

jT  
(j=1,2). Due to the principal of superposition it can be presented as 

 
)2,1(),(),(),( 0* =+= jyxTyxTyxT jjj  ,       (3) 

 
where ),(0 yxT j  – the temperature distribution in a bimaterial in the absence of cracks, ),( yxT j  – 
the temperature perturbation caused by the cracks.  

In the case of a uniform heat flux applied to the bimaterial the temperature ),(0 yxT j  in an 
undamaged bimaterial does not cause stresses so that we are interested first of all in the 
determination of the temperature perturbation ),( yxT j . It should be noted that if a heat source 
applied at the undamaged bimaterial additional stresses appear and should be calculated.  

 The heart conduction equation for the steady state is 
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and taking into account Eq. 1 it is reduced to 
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and for material 2 with 0=δ  we have Laplace equation 
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The thermal boundary conditions and continuity conditions for the temperature perturbation 
),( yxT j  read as follows: 
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and the temperature perturbation vanishes at infinity so that 
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The signs ‘+’ and ‘–’ denote the limiting values of the functions on the upper and lower surfaces of 
the crack or the interface, respectively.  

 
Thermoelastic problem. The basic equations of plane thermal stress problems for the FGM are 

the following: 
the equilibrium equations 
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and the compatibility condition 
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Introducing the Airy function U relating to stresses by 
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the governing equation for thermo-elasticity for the FGM part is obtained 
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For a homogeneous material 0,0 == γβ  and we have 

 
02002 =Δ+ΔΔ TEU α .          (16) 

 
The mechanical boundary conditions for the traction-free interface crack are 

 
0,||,0)()( 02211 =≤=−=− −+ yaxii xyyxyy τστσ       (17) 

 
and for internal cracks 

 
0,||,0)()( =≤=−=− −+

kkkjxyjyjxyjy yaxii τστσ .      (18) 
 

The continuity conditions in the interface read as follows: 
 

0,||,)()( 02211 =>−=− −+ yaxii xyyxyy τστσ ,      (19) 

0,||,)()( 02211 =>−=− −+ yaxivuivu  
 

and the condition at infinity is 
 

∞→+→ 22,0 yxijσ .          (20) 
 
The signs ‘+’ and ‘–’ denote as previously the limiting values of the functions on the upper and 

lower surfaces of the crack or the interface, respectively. 

Solution of the Problem 

The Fourier transform method is used for the solution of thermal and thermoelastic problems. Due to 
the superposition principle the problem is decomposed into sub-problems with simple geometry. If 
we consider a particular case of the interaction of an internal crack normal to the interface 
( 2/πθ =k ) with an interface crack ( 0=kθ ) we should solve two sub-problems with only one crack 
and superimpose them.   

Consider one of the problems, the thermal problem with an internal crack of length 2ak=2a 
located on the y-axis. By applying the Fourier transform to Eq. 5 with respect to y, the following 
ordinary differential equation is obtained 
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where 
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Then, by applying the Fourier transform to Eq. 5 with respect to x, we have 
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From Eqs. 22, 23 the solutions of ),(1 ξxf  and ),(1 yg ξ  is obtained as 
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Taking into account the condition at infinity Eq. 11, we get B1=0.  
According to the principal of superposition, the temperature of FGM can be expressed as 
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The following function is introduced as 
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The single-valuedness condition is obtained 
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Applying Fourier transform to Eq. 27 and taking into account condition Eq. 28 we can define that 
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Then applying the Fourier transform to Eq. 26 with respect to x and using Eq. 29 we get 
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where dxeyxTyT xiξξ ),(),( 11 ∫
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Now we need a solution of Eq. 6 in the form which is convenient for the construction of the full 
solution of the problem. Applying the Fourier transform to Eq. 6 with respect to x the following 
ordinary differential equation is obtained   
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The solution of  Eq. 31 is 
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Because of the condition at infinity we have A2=0. The other unknown constants are obtained from 
continuity and boundary conditions Eqs. 7-10.  

The boundary condition on the crack line can be written as 
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Taking into account Eqs. 26, 29, 33 the following singular integral equation is obtained 
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where R(t,y) is the regular kernel, containing the parameters of the problem. 

Eq. 34 can be solved numerically by the mechanical quadrature method in which the series of 
Chebyshev polynomials of first kind is used. The integral equation Eq. 34 together with condition 
Eq. 28 is reduced to a system of linear algebra equations.  

If we are solving the crack interaction problem then we should consider the interface crack 
problem and superimpose two solutions. The scheme of the solution is the same as described above.    

  

Conclusion 

The boundary value problem for the FGM/homogeneous bimaterial is formulated for the interaction 
between the internal crack with the interface and the interface crack under the influence of a heat 
flux. The FGM thermoelastic constants are supposed to have exponential form. The uncoupled, 
quasi-static thermoelastic theory is applicable to this problem so that the solution consists of the 
determination of the temperature distribution and the determination of the thermal stresses. The 
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solution of a particular problem of two cracks is considered and a method for the solution is 
presented. The method is based on the Fourier transform and the superposition technique and leads 
to a system of singular integral equations which can be solved numerically.  
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