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Abstract. Fracture in quasi-brittle material specimens with V-notches is satisfactorily described 
assuming as governing parameter the generalized (or notch) stress intensity factor, whose 
anomalous physical dimensions depend on the notch opening angle. Its critical value, i.e. the 
generalized toughness, can then be linked to the material strength and toughness according to a 
number of fracture criteria available in the literature. However, all these criteria provide an infinite 
failure load as the notch depth tends to zero, this undesirable property being shared with LEFM. 
Aim of the present paper is to overcome this shortcoming. The analysis of the notched specimens is 
carried out by means of a multiscale approach according to which the problem is solved separately 
in the region far away from the notch (the outer field) and in the region close to the notch (the inner 
field). Hence the asymptotic matching technique can be exploited to achieve the overall solution. 
The results are finally compared with experiments performed on polystyrene specimens. 

Introduction 

When dealing with brittle or quasi-brittle materials, two main failure criteria are generally taken into 
account. The former is a stress criterion: i.e. failure takes place if, at least in one point, the 
maximum principal stress reaches the tensile strength σu. The latter is an energetic criterion: it states 
that failure happens if the crack driving force � equals the crack resistance �F. �F is the so-called 
fracture energy, i.e. the energy necessary to create the unit fracture surface. According to Irwin’s 
relationship and dealing, for the sake of simplicity, only with mode I crack propagation, the 
energetic criterion can be expressed equivalently in terms of stress intensity factor (SIF) KI and 
fracture toughness KIc: failure is achieved whenever KI = KIc. This is the failure criterion provided 
by linear elastic fracture mechanics (LEFM). 

The stress criterion provides good results only for crack-free bodies, whereas the energetic 
criterion works only for bodies containing a sufficiently large crack. Otherwise both the criteria fail. 
Consider, on the other hand, specimens with re-entrant corners (i.e. V-notched specimens, with 
notch opening angle ω). Since the stress field is singular at notch tip, the stress criterion provides 
always a vanishing failure load. On the other hand, LEFM gives an infinite failure load since the 
order of the singularity is lower than 1/2 (which implies a null SIF). It is therefore argued that the 
stress and the energy aspects have to be contemporaneously considered to have a general failure 
criterion [1]. 

The goal of coupling the two approaches is usually achieved by means of the cohesive crack 
model [2]. It is a model widely spread in the scientific community, since it represents a very 
versatile tool when dealing with quasi-brittle materials. However, it requires a specific numerical 
algorithm to be inserted in structural design codes (see [3] for applications of the cohesive crack 
model to V-notches). 
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On the other hand, analytical or semi-analytical results may be obtained assuming that crack 
initiation occurs by a finite crack advancement. This kind of approach is usually named Finite 
Fracture Mechanics (FFM) and already applied to V-notch by Leguillon [4] and Carpinteri et al. [5]. 

Different versions of the FFM exist. The simplest one is achieved assuming a fixed crack 
advancement Δ, i.e. Δ is a material parameter. Fracture initiation will occur whenever the strain 
energy release ΔΦ reaches the critical value �F Δ [6,7]: 
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where E' is the Young modulus in plane strain elastic problems. The coefficient c is equal to 1.12 
for edge cracks. Application of the FFM criterion (1) to V-notched specimens results in the 
following failure criterion: 

** KK IcI =  (2) 

where KI
* is the generalized SIF (sometimes referred to as notch-SIF) and KIc

* the generalized 
fracture toughness. The criterion (2) was already available in the literature since the pioneering work 
by Carpinteri [1]. According to Eq. 1, the following expression of the generalized fracture toughness 
is finally achieved: 
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where λ(ω) is the exponent characterizing the stress field singularity according to the classical 
analysis due to Williams; ξ(ω) is a parameter whose analytical expression can be found in Carpinteri 
et al. [5] and is based on interpolation functions from Murakami’s SIF handbook. Note that ½ ≤ λ ≤ 
1 and ξ = 1 for ω = 0° or 180°, so that Eq. 3 provides KIc

* = KIc for ω = 0° (λ=½) and KIc
* = σu for ω 

= 180° (λ=1). Note that, in the literature, failure criteria other than Eq. 1 are available: they yield 
estimates of the generalized fracture toughness that differ from Eq. 3 because of different ξ values 
[4,5,8,9,10,11]. 

However, Eq. 2 presents the same drawback shown by LEFM for cracks: it provides infinite 
failure loads for notch depths tending to zero, since KI

* tends to zero. Therefore the criterion (2) has 
to be considered valid only for large V-notches. The prediction of the failure load of specimens 
containing shallow V-notches is the subject of the present paper and will be obtained by means of 
the FFM criterion (1) together with a two-scale asymptotic analysis of the geometry involved. The 
asymptotic analysis will be addressed following the procedure outlined in [12], where it was 
exploited to analyse the blunting effect of the notch root radius in ceramic materials. 

Perturbation theory and asymptotic matching 

By decomposing a tough problem into a number of relatively easy ones, perturbation theory aims to 
obtain approximate solutions to problems involving a small parameter �. 

Perturbations can be regular or singular. A basic feature of all regular perturbation problems is 
that the exact solution for small but nonzero � smoothly approaches the solution of the unperturbed 
(� = 0) problem. Referring to differential equations, a singularly perturbed differential equation is 
usually related to the presence of the parameter � in front of the highest order derivative. The 
solutions of such equations are characterized by the presence of a boundary layer, i.e. a narrow 
region where the solution changes rapidly and whose thickness approaches 0 as � → 0. 
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If an analytical solution is not achievable, an approximate solution can be obtained by dividing 
the interval on which the boundary-value problem is posed into two overlapping subintervals, the 
inner (where the boundary layer takes place) and outer domain. The solution can be computed in 
each interval up to some extent: missing terms are determined by imposing that a region must exist 
where the two solutions overlap. This technique is named asymptotic matching procedure and 
allows one to achieve the final (approximate) solutions [4]. 

In what follows, the asymptotic matching will be applied to study the effect of shallow notches. 
In such a case, the notch itself will be considered as a small perturbation of size e (Fig. 1). As can be 
easily argued, the perturbation is singular since a stress intensification/concentration is present as far 
as e ≠ 0, whereas it suddenly disappears as the notch vanishes (e = 0). 
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Figure 1. Three point bending test of a specimen with a shallow sharp V-notch. 

Asymptotic analysis of a notched specimen 

Let us consider a specimen with a small notch loaded in mode I conditions, as is, for instance, the 
three point bending specimen represented in Fig. 1. We assume that the notch depth e is small with 
respect to the other geometrical dimensions. 

What follows is based on a two-scale asymptotic analysis in plane strain linear elasticity. The 

actual displacement field is denoted by eU , where the superscript e reminds the dependence of the 

displacement field on the notch. Denoting by (r, θ) the polar coordinates of a system centred at the 
specimen mid span intrados (see Fig. 1), the actual solution can be expressed as: 

( ) ( ) correction small0 +θ=θ ,rU,rU e  (4) 

where 0U  is the solution of the plain, un-notched specimen (i.e. when e = 0). As r tends to zero, it 
can be expanded as: 

( ) ( ) ( ) �+θσ+==θ urrU,rU N
00 0  (5) 

The first term at the right-hand side represents the irrelevant rigid translation; σN is the nominal 
stress, i.e. the maximum normal stress that would occur if the specimen were un-notched; ( )θu  is a 

function of the angular coordinate θ as well as of the material elastic parameter E', ν' (not marked 
explicitly). Eq. 4 represents the outer field solution, since it is an approximation which breaks down 
in the neighbourhood of the notch. 

To have a detailed description of the actual solution eU  close to the notch, the domain is 

stretched by 1/e. The new dimensionless radial coordinate is ρ = r/e. The notch size attains a unit 
measure and, as e → 0, the inner domain becomes unbounded (see Fig. 2a). In the inner domain the 
actual solution is assumed to expand as follows: 
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Figure 2. Inner domain and contour integral with (b) and without (a) the crack at the V-notch root. 
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Boundary conditions to determine the functions iV  are needed. These conditions can be derived 
by the asymptotic matching, i.e. an intermediate region exists where the two expansions (the outer, 
Eq. 4, and the inner, Eq. 6) holds true. In other words, expression (6) for ρ→∞ must coincide with 
Eq. 4 for r → 0 (i.e. with Eq. 5). This is true if: 

( ) 10 =eF , ( ) eeF Nσ=1 , ( ) ( )00 00 ===ρ rUV  (7) 

and 

( ) ( )θρ=θρ u,V 1  for ρ→∞. (8) 

Substituting Eqs. 7,8 into Eq. 6, finally yields: 

( ) ( ) ( ) ( ) �+θρσ+==θρ=θ ,VerU,eU,rU ee 1
N

0 0  (9) 

In order to apply the finite fracture mechanics criterion of Eq. (1), we need to evaluate the 
displacement field when a small crack a is present at the notch root (see Fig. 2b). The ratio of the 
crack length to the notch depth e is denoted by α = a/e. We can follow the same procedure outlined 
before to get the following expansion: 

( ) ( ) ( ) ( ) �+αθρσ+==αθρ=θ ,,VerUa,,eUa,,rU ee 1
N

0 0  (10) 

Eq. 10 generalizes Eq. 9, when α ≠ 0; hence, thereafter we rewrite ( )θ,rU e  and ( )θρ,V 1  as 

( )0,,rU e θ  and ( )01 ,,V θρ  respectively. 

As stated in the introduction, the great advantage of this approach is that ( )αθρ ,,V 1  is 

independent of the applied load, geometry and notch size. ( )αθρ ,,V 1  can be computed by a finite 
element analysis (FEA). Since the inner domain is unbounded, we need to bound it artificially by 
limiting the radial coordinate at ρ = ρ∞; ρ∞ has to be large if compared with the dimensionless notch 
size (i.e. unity) and crack length (i.e. α). In our numerical simulation, we assumed ρ∞ = 200. For 
what concerns the boundary condition (8) on the ρ∞-circumference, one can choose Dirichlet as well 
as Neumann conditions: 
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where ][ 1Vσ  denotes the Cauchy stress tensor associated to the displacement field 1V  and n  the 
normal to the boundary. In the numerical simulations we used Neumann boundary conditions. 

The strain energy release 

The strain energy release produced by a short crack a at the notch root (Fig. 2b) may be computed 
by a suitable application of Betti’s theorem. 

Let us consider a region surrounding the notch, e.g., for the sake of simplicity, bounded by a 
circumference of radius r (see Fig. 2, dashed line). Then, consider two configurations: the former 
one without the crack of length a at the notch root (denoted by “c”, since the crack is closed, Fig. 
2a); the latter one with the crack (denoted by “o”, since the crack is open, Fig. 2b). The 
configuration without the crack can be seen as if the crack were open but with a stress distribution 
acting on the crack lips corresponding to the closed geometry. Betti’s theorem states that the 
reciprocal works of the two systems are equal: 

��� η×σ+η⋅=η⋅
ππ a

xrtrt
0

oc

0
oc

0
co dy)(d�d�  (12) 

where t  is the stress vector acting on the boundary, η  the displacement field and a dot (⋅) 

represents the scalar product. Since only mode I loading conditions have been considered, only the 
normal component σ of the stress and the horizontal displacement ηx appear in the second integral 
at the right-hand side (x,y being the horizontal and vertical axes, respectively). It is easily recognized 
that this term is twice the crack closure work, i.e. the strain energy release ΔΦ due the crack 
formation. Therefore: 

( )�
π

⋅−⋅=ΔΦ
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occo d�
2
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rutut  (13) 

From Eq. 13 we see that the integral at the right-hand side does not depend on r, i.e. is a path-
independent integral. According to the notation used in the previous section, Eq. 13 may be 
rewritten as: 

( ) ( )�
π
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Taking the integral in the inner domain, i.e. using the expansions (9) and (10), yields: 

( ) ( )�
π

ραθρ⋅θρσ−θρ⋅αθρσ
σ

=ΔΦ
0

11112
2
N d�)(]0[)0(][

2
}{ ,,Vn,,V,,Vn,,V'Ee

'E
 (15) 

The contour integral at the right-hand side depends only on the dimensionless parameter α (and on 

the notch shape). In fact: (i) it does not depend on the material parameter E', ν' (since 'EV 11 ∝  and 
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a numerical check shows that Poisson coefficient has no influence); (ii) θ disappears by integration; 
(iii) ρ does not affect the integral since it is path-independent; (iv) the integral is independent of the 
size of the perturbation (i.e. the notch) and of the load thanks to the asymptotic matching technique 
used above. The information about the load, the material and the notch size are collected in the term 

'Ee 2)( Nσ  multiplying the integral in Eq. 15, which will be hereafter denoted by I(α). 

 
α I(α) σN,f / σu (Eq. 17) σN,f / σu (Eq. 19) 
0 0 0 0 
0.5 4.553 0.4658 0.4690 
1 11.47 0.5871 0.6121 
2 31.33 0.7103 0.7989 
4 95.71 0.8127 1.0428 
∞ ∞ 1 ∞ 

Table 1. Values of the path-independent integral and of the residual strength fraction for different values of α. 

The failure criterion 

Let us apply the FFM criterion of Eq. 1. By means of Eq. 15 it becomes: 
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where the subscript f has been introduced since now the nominal stress corresponds to the value at 
incipient failure and α = Δ/e. By some analytical manipulations, we finally get: 
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σ
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Once the relation between load and nominal stress is known, Eq. 17 provides also the failure load. 
The ratio (17) is always smaller than unity. It can be seen as the strength reduction caused by the 
presence of the notch, since it is the ratio between the strengths with and without the notch. 

Eq. 17 is a very general result, the only limitation being that both the crack advance (Δ) and the 
notch size e have to be much smaller than the specimen size. In other words, Eq. 17 is valid for 
specimens containing shallow notches subject to mode I loading conditions (opening). 

Once ( )αθρ ,,V 1  is obtained by a FEA, the contour integral I(α) can be easily computed. In 
Table 1, its value as well as the value of the ratio (17) are given for different values of the 
geometrical-material parameter α (0 < α < ∞) in the case of V-notches with opening angle � = 120°. 

Concerning the limit cases, it should be noted that, for α→∞, i.e. for notch size tending to zero 
and/or relatively ductile materials, the structure becomes insensitive to the notch and the nominal 
stress at failure coincides with the ultimate tensile strength as anticipated in [1]. This result is valid 
for any notch shape. 

For α→0, i.e. for large notch size and/or very brittle materials, the result depends on the notch 
shape. Let us consider the case of a V-notch. If α→0, the failure conditions are achieved when the 
generalized SIF reaches its critical value (Eq. 2). However, since we assumed that the notch depth is 
much smaller than the structural size, the generalized SIF has the following expression: 

λ−βσ= 1
NI eK*  (18) 
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where β is a parameter depending on the notch opening angle: for instance, β = 1 for ω = 180° (λ = 
1, flat edge) and β = c√π for ω = 0° (λ = 1/2, edge crack). A numerical simulation can provide the 
values for intermediate cases: for instance, β = 2.13 for ω = 120°. By means of Eqs. 2,3 and 18, we 
finally get the following limit value: 

0
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σ

σ
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,
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Eq. 19 is tabulated in Table 1 as well. As expected, it provides a good approximation to Eq. 17 for 
α→0, whereas it yields an overestimation of the structural strength as the notch becomes smaller 
and smaller. In the limit of a vanishing notch (α→∞), Eq. 19 provides an infinite failure load; as 
stated in the introduction, this is a shortcoming shared with LEFM, since Eq. 19 derives from Eq. 2. 

The strength predictions given by Eqs. 17 and 19 are plotted in Fig. 3a vs. 1/α, i.e. the 
dimensionless notch size (e/Δ). Also in this plot it is evident that the LEFM-like criterion KI

*= KIc
* 

may largely overestimate the failure load in the case of very small notches. In Fig. 3b the same 
diagram is plotted in a bi-logarithmic scale. In such a case, Eq. 19 is represented by a straight line of 
negative slope (1−λ): the prediction of the present model departs from this straight line for large α 
values. Finally, it is worth noting that figs.3 describe the effect of the notch size and not the size 
effect, since the structural size is assumed to be constant and much larger than both the notch and 
the crack advancement. 
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Figure 3. Dimensionless failure load vs. α−1(a). Bi-logarithmic plot (b). 

Comparison with experimental data 

The predictions provided by the present model were compared with the data obtained by a series of 
three point bending tests. The specimens were made of Polystyrene and presented at the mid-span a 
sharp V-notch with opening angle equal to 120° (the notch root radius was kept smaller than 10μm). 
The relative notch depths were taken equal to: 0, 1/90, 1/30, 1/10. Each geometry was tested five 
times. The un-notched specimens provided an average value of the tensile strength σu equal to 70.6 
MPa, whereas the fracture toughness was derived by previous tests performed on cracked specimens 
of the same material and stock, yielding KIc = 2.23 MPa√m. Thus the crack advancement Δ is equal 
to 506 μm. For details about the geometries tested see [5]. 

By definition, the ratio of the recorded failure loads to the average failure load of the un-notched 
specimens is also equal to the ratio of the nominal stress at failure to the tensile strength. Hence the 
results are drawn in Fig. 4, where experimental data and theoretical predictions have been plotted 
vs. the relative notch depth. It is evident the excellent agreement for small notches, where the 
LEFM-like criterion breaks down [1]. On the other hand, the asymptotic approach underestimates 
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the strength for relatively large notch depths (i.e. 1/10), but this feature had to be expected since the 
perturbation theory breaks down when the smallness assumption fails. However, for large notches, 
Eq. 3 provides excellent results if the generalized SIF is properly computed (see [5]). In other 
words, Eq. 19 never gives satisfactory results, either because it does not consider correctly the effect 
of shallow notches either because the asymptotic value of the generalized SIF (18) does not hold 
true for notches whose size is comparable with the specimen height. 
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Figure 4. Dimensionless failure load vs. relative notch depth: comparison with experimental data. 

Conclusions 

In the present paper a multiscale analysis was developed to estimate the strength decrement due to 
the presence of a shallow notch. The analysis is applicable to any notch shape and geometry, 
provided that the notch is subject to mode I loading conditions. Numerical results were explicitly 
given for specimens with a re-entrant corner of 120°. A fairly good agreement with experimental 
data seems to prove the soundness of the present approach. 
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