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Abstract. Statistical theory of mesoscopic defects (microcracks, microshears) allowed us to 
establish new type of critical phenomena– structural-scaling transitions, to develop thermodynamics 
of solid with mesodefects and to propose the phenomenology based on generalization of the 
Ginzburg-Landau theory. The key result of statistically based phenomenology is the interpretation of 
multiscale damage evolution in terms of characteristic collective modes of defects responsible for 
damage localization and transition to failure. Original experiments supported the linkage of these 
modes with material responses in large range of load intensity and allowed the interpretation of 
nonlinear crack dynamics, mechanisms of failure wave, scaling laws in seismic events. 

Introduction 
The problem of failure is one of the key problems of fundamental and applied physics and 
mechanics. Despite the large amount of experimental data and the efforts in materials science, there 
is no answer on some of the important questions conditioning progress in the estimation of 
reliability, prediction of fatigue and dynamic failure, as well as strength under intensive (shock 
wave) loading. To follow [1] the most basic questions still unanswered are: “What are the 
fundamental distinctions between brittle and ductile behaviors? Remarkably, we do not have a 
fundamental understanding of distinctions between these two behaviors. Moreover, the brittleness 
or ductility of some materials depends upon the speed of loading, which implies that a proper 
description of deformation and fracture must be dynamic, that is, it must be expressed in the form of 
equations of motion rather than the conventional phenomenological rules and yielding criteria.” Our 
approach, which derives from the collective behavior of defects, is based on the statistical physics of 
mesoscopic systems with defects, which has already allowed the establishment of qualitative new 
features of failure as critical phenomena or structural-scaling transitions. The main ideas are based 
on the recognition that solids under loading demonstrate changes on all structural levels. These 
changes are associated with plastic deformation and damage processes, and result from the 
nucleation and growth of defects. Experimental studies of material responses in a large range of 
loading rates show that the behavior of solids is intimately linked with the evolution of typical 
mesoscopic defects (dislocation substructures, microcracks, microshears). This characterizes 
generically solids under dynamic and shock wave loading, when the internal times of the evolution 
of ensemble of defects for different structural levels are approaching the characteristic loading 
times. As a consequence, the widely used assumption in the phenomenology of plasticity and failure 
that structural (defect) variables can effectively be subordinated to the stress-strain variables 
(adiabatic limit) is not generally valid. In order to understand the nature of plastic deformation and 
failure, the key problem is to characterize the evolution of the statistics and the thermodynamics of 
typical mesodefects. This problem is intrinsically associated with an adequate description of the out-
of-equilibrium system of evolving defects interacting over long ranges leading to the appearance of 
collective defect modes.  
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Statistical Mechanics of Solid with Mesodefects 

Microcrack (microshear) ensemble may be considered as the representative for developed stage of 
failure. The rest of defects (point defects, dislocations, dislocation pile-ups) have smaller values of 
elastic fields and energies in the comparison with microcracks and microshears. Moreover, the 
nucleation and growth of these defects (that are closest to the macroscopic level) are some final acts 
of the previous rearrangement of the dislocation substructures, when all defects take part in the 
structural relaxation of elastic field. The density of microcracks (or microshears) reaches 
10 1012 14 3− −cm , but each this mesoscopic defect, for instance, for crystalline materials, 
represents the dislocation pile-up and exhibits the properties of this ensemble. Structural parameters 
associated with microcracks and microshears were introduced [2] as the derivative of the dislocation 
density tensor. These defects are described by symmetric tensors of the form s sv vik i k=  or 
s s v l l vik i k i k= +1 2/ ( )  for microcracks and microshear correspondingly. Here ν�  is unit vector 

normal to the base of a microcrack or slip plane of a microscopic shear; l
�

 is a unit vector in the 
direction of shear; s is the volume of a microcrack or the shear intensity for a microshear. The 
average of the “microscopic” tensor iks gives the macroscopic tensor of the microcrack or 
microshear density ikik snp = , that coincides with the defect induced deformation, n  is the defect 
concentration. 
Statistical mechanics of mesodefects was developed in [3] assuming the statistical self-similarity of 
defect distribution. Similar statistical approach was proposed in [4] for the formulation of the so-
called “slip blocks” or “shear lattice” models in the application to the earthquake mechanics, where 
the role of fluctuations is also important. The Boltzmann type distribution of defects is discussed in 
“shears lattice” models ( ) [ ]sbqq TEexpEp −∝ , where sbT is the average energy (effective 
temperature) related to characteristic degrees of freedom in the system of shears. Definition of the 
effective temperature sbT  is linked with the energy functional ( )sU  of blocks interacting in the 

course of sliding: ( ){ }sU
2
1Tsb = , where ( )sU  is the average energy in the block lattice and 

corresponding to the single block. This approach follows to the assumption that the system has the 
sensitivity to noise (similar to the Boltzmann fluctuations) that provides realization of all states in 
the phase space of mentioned variables. Such assumptions were analyzed using the cellular 
automata models to take into account long-range interactions in the sliding block system for the 
application of the “mean field” approach for the development of continuum models of the system of 
interacting sliding blocks (“coarse-grain models”) [5]. This analysis established the existence of two 
critical points, where the cluster scaling was associated with the fluctuation induced criticality. 
Critical states correspond to the transition from disordered states at low stress to the metastability 
leading to the ordering states for high stress. Microscopic kinetics of si k  corresponds to the Ito-
Langevin equation  

� ( ) ,s K s Fi k i k l m i k= − (1) 

where
ik

ik s
EK ∂

∂= is the deterministic part of force field, influencing on the localized distortion. 

The energy of mesodefect can be represented as 2
0 ikikik ssHEE α+−=− , where the quadratic term 

reflects the energy fluctuation arising in the immediate vicinity of microcrack, the term ikik sH
describes” the energy release due to the microcrack growth in the field of the “effective field” 

,pH ikikik λσ +=  where ikσ  is the external stress; λα ,  are the parameters related to the 
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effective constrained constants; Fi k  is the random δ -correlated part of the force field satisfying the 

relations: F ti k ( ) = 0  and F t F t Q t ti k i k( ') ( ) ( ')= −δ . Here Q is the correlator of fluctuating 
forces induced by mesodefects. Macroscopic value of defect induced strain – the microcrack density 
tensor ikik snp =  follows from the average ikkiki dslsWsnp ),,(

��ν�= , where the distribution 

function has the form ( )QEZW −= − exp1 ; ( ) ikdsQEZ � −= exp  is the normalization factor. The 

definition of dimensionless variables ( ) ασσαα QsQspQnp ikikikikikik === ˆ,ˆ,1ˆ  allows 
the representation as the self-consistence equation 

ikikikikikikik sdsspZsp ˆˆˆ)ˆ1ˆ(expˆˆ 21� �
�
�

�
�
� −+= −

δ
σ , (2)  

that contains unit dimensionless parameter ( )nλαδ = . Dimension analysis shows 
3

0 ~,~,~ −RnGVG λα , where G  is the effective constrained modulus solid with microcrack; 
3

00 ~ rV  is the “nuclei volume” of microcrack; R  is the correlation radius (mean distance) between 

microcracks. Finally the presentation for δ  reads ( )3
0~ rRδ , that reflects mentioned statistical 

self-similarity in the multiscale distribution of microcracks [3]. The solution of equation (2) for the 
case of uni-axial tension ( zzzz ,pp σσ == ) is shown in Fig.1. The existence of three characteristic 
nonlinear responses were found corresponding to different values of structural scaling 
parameterδ ( 1,3.1 *,* ≈<<<≈> cc δδδδδδδ ), where cδ  and *δ  are the bifurcation points. 
Bifurcation points cδδ ,*  play the role similar to critical temperatures in the Landau theory of 
phase transformations. Different non-linearity corresponding to the pass of critical points describe 
different scenario of defect ordering depending on material sensitivity to the defect growth in term 
of initial value of structural-scaling parameter. The structural scaling parameter δ  has the meaning 
of the second order parameter and the value of δ  determines the “thermalization” conditions 
(similar to the effective temperature) of mesoscopic out-of-equilibrium system. Taking into account 
the physical meaning of structural-scaling parameter the natural generalization for the distribution 
function can be introduced to assume the independent statistics for δ  as the variation of structural 
scales R  and 0r  in the initial state of system ( ) ( ) ( ) ( )δδδδ ÊexpZfdÊN 1 −= −� , where ( )δf  is 
the distribution function for the initial “sensitivity” of the system to the defect growth in the term of 
δ ; ( ) ikikikikik spssE ˆˆˆˆˆˆ 2 +−= σδ . The average assumes in this case the integrating over all order 
parameters of mesoscopic system  

( ) δ
δ

σδ dsdsspZsfp ikikikikikikik ˆˆˆ)ˆ1ˆ(expˆˆ 21�� �
�
�

�
�
� −+= − .     (3) 

The dependence of statistical integral on the unit structural parameter δ  and corresponding non-
linearity types reflect, probably, the universal properties of media with local change of symmetry 
under the generation of localized interacting distortions. 
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Fig.1. Nonlinear responses of system on the microcrack growth (a) and characteristic collective 

modes for different values of structural scaling parameter δ (b). 

Mentioned non-linearity and related group properties of dynamic equations for ikp define the types 
of collective modes that can subject the dynamics of entire system. With the evolution of these 
modes can be linked characteristic solid states in the presence of defects (quasi-brittle, ductile). 

Non-equilibrium free energy. Phenomenology of solids with microcracks  

Statistical approach allowed one to propose the mesoscopic out-of-equilibrium potential, which 
describes different scenario of microcrack ensemble evolution related to nonlinearity types. The 
curves, presented in Fig.1, corresponds to the solution of equation 0=∂∂ pF , where F  is 
mesoscopic potential (nonequilibrium free energy). For the case of simple shear  
( ,, xzxzpp σσ == ) the “minimal extention” for F is given by the 6th power polynomial 
presentation and has the form similar to the Ginzburg-Landau expansion  

( ) ( ) ( )2642
* ,6

1
4

1,2
1 ppDpCBppAF l� ∇+−+−= χσδδδδ  [3]. The gradient term describes 

the non-locality effect under the microcrack interaction; DCBA ,,, and χ  are the parameters 
characterizing nonlinear properties of solid with microcracks predicted in the frame work of the 
statistical description. Kinetics of mentioned order parameters ikp  and δ  follows from the 
evolution inequality 0<∂∂+∂∂=ΔΔ δδ �� FppFtF  and is given by the motion equations (the 
Ginzburg-Landau approximation)  

( ) ( ) ( )( )pDpCBppA
dt

dp
ll�p ∇∇−−+−Γ−= χσδδδδ 53

* ,, , (4)

�
�
�

�
�
�

∂
∂−

∂
∂Γ−= 62

6
1

2
1 pCpA

dt
d

δδ
δ

δ ,  (5) 

where pΓ � δΓ  are the kinetic coefficients. As it follows from the solution of equations (4), (5) the 

transitions over the bifurcation points δ c  and δ *  result in sharp changes of the distribution function 
and the formation of collective modes of microcracks. The type of transitions over the critical points 
is given by the bifurcation type – the group properties of equations (4), (5) for different ranges of the 
structural-scaling parameter δ δ δ δ δ δ δ δ( , , )* *> < < <c c . This equation has in the area δ δ> *

the elliptic type with the eigen forms as spatial-periodic modes 1S  (Fig.1b) on the scales Λ  with 
week anisotropy (orientation) determined mainly by the force field σ . For δ δ→ *  the eigen forms 
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of equation (4) undergo qualitative changes in condition of the divergence of inner scale Λ : 
( )*ln δδ −−≈Λ . The periodic solution transforms into the “breathers” for *δδ →  (in the area 

*δδ > ) and the auto-solitary waves )()( Vtxpp −=ζ  in the orientation metastability area 

*δδδ <<C , where the collective modes appear at the front of solitary wave ( 2S , Fig.1b). The wave 
amplitude p , wave front velocity V  and the width of wave front SL  are determined by the 
parameters of non-equilibrium transition  

( )[ ] ( ) ( ) 211 24,)(121 AppLLtahnppp maSSma χζ −=−−= − .    (6) 

The velocity of wave fronts is 2)( pma ppAV Γ−= χ , where )( ma pp −  is the jump in the value of 

p  in the metastability area. A transition through the bifurcation point δ c  is accompanied by the 
appearance of spatio-temporal structures of a qualitatively new type characterized by explosive 
accumulation of defects as ftt →  in the spectrum of spatial scales (“blow-up” dissipative structures 

3S , Fig.1b) [3]. It is shown in [6] that for equations (7) for CC pp >< ,δδ the developed stage 
of kinetics of p  in the limit of characteristic times ftt →  can be described by a self-similar 
solution of the form  

( ) ( ) ( ) ( )d
f

m
f tttttttxfttxp −−== − ~,~)(,),()(),( ϕφϕζζφ ,     (7) 

where dm,  are the parameters related to the nonlinearity type of equation (4) for 

CC pp >< ,δδ ; ft  is the characteristic temporal scale of self-similar solution (7). There are three 
types of self-similar solution (7) depending on the value of mentioned parameters dm, . The 
solution for represents the particular interest, when the self-similar solution has the form  

( )[ ] ( )
( )

m

f

m
fC L

x
m
mmttCtxp �

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
+

+
+−= − πθπδδ 2sin
21

12)(,),( ,     (8) 

where θ  is a random number in the interval (0,1). Specific form of the function )(ζf  can be 
determined by solving the corresponding eigen value problem. The scale ,fL  so-called fundamental 

length [3], has the meaning of a spatial period of the solution (8): ( )( )2
1

1 ,)11(2 Cf CmmL δδχπ −+= .
The self-similar solution (8) describes the kinetics of the microcrack ensemble in the “blow-up” 
regime ∞→),( txp  for ftt →  on the spectrum of spatial scales )K,...2,1k(kLL fH == and can 
be linked with multiscale damage evolution. In this case the complex “blow-up” structures appear 
on the scales fH kLL =  (Fig.1b), when the distance between simple structures CL  will be close to 

fL . The set of eigenforms related to the spectrum of auto-solitary waves and blow-up dissipative 
structures represent the collective variables of nonlinear dynamic system “solid with mesodefects”. 
Experimental program was realized to support theoretical prediction of the role of mentioned 
collective modes in relaxation ability of materials, nonlinear aspects of damage-failure transition, 
fragmentation statistics [3].  

Fig.4 shows an example illustrating how the theory outlined in the previous sections provides an 
explanation for the transition from the steady-state to the branching regime, to fragmentation 
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statistics and the failure wave phenomenon. High speed framing of crack dynamics was realized to 
analyze different crack dynamics in the preloaded PMMA plate [3]. Three characteristic regimes 
were observed in the different ranges of crack velocity: steady-state �VV < , branching CVV >  and 
fragmenting BVV > , when the multiple branches of the main crack take an autonomous behavior. 

�
�� ��

���

, M P aσ��

, /V m s

BV

CV

SV

Fig. 2. Characteristic regimes of crack dynamics 

High speed framing experiment (resolution 107  frames per second, coupled with polarization 
scheme) for crack dynamics in the preloaded PMMA plate allowed to confirm the transition from 
the steady-state to the branching dynamics for characteristic crack velocities VC~0.4VR and to 
discover according to the theoretical prediction the second critical velocity VB as the onset of 
fracture controlled by the “blow-up” dynamics of daughter cracks originated in the process zone. 
Three mentioned regimes of crack dynamics is the consequence of existence of two self-similar 
solutions (two attractors) for dynamic variables: long range self-similar stress distribution at the 
process zone (as the basis for stress intensity factor conception, �VV <  ) and self-similar solutions 
corresponding to the set of “blow-up” collective modes of defect density tensor ( BVV > ). The link 
of self-similar solutions (attractor types) and statistics of failure depending on the energy density 
imposed into material was established: energy dependent statistics ( �VV < ), the Poisson statistics 
( BVV > ) and the intermediate (Weibull) statistics in the range of the co-existence of two mentioned 
attractors. The degeneration of the Poisson statistics into the uniform distribution of fragments with 
the scales corresponding to simplest “blow-up” eigenforms allowed the explanation of the “failure 
wave” as the phenomenon of “delayed failure” under the resonance excitation of “blow-up” 
collective modes of damage localization with delay time given by solution (7). Experimental 
validation of this theoretical prediction was realized as the high-speed framing of failure wave 
generation and propagation in fused-quartz rods loaded in the condition of the symmetric Taylor 
test. Processing of high-speed photography of the flyer rod traveling at 534 m/s at impact shows 
(Fig.3) three dark zones corresponding to the image of the impact surface (green triangles), the 
failure wave (red squares) and the shock wave (blue diamonds). The initial slope for the failure 
wave gives the front velocity skmV fw /57.1≈ , which is close to traditional measures in the plate 
impact test. However, the analysis reveals the increase of failure front velocity up to the value 

skmV fw /4≈ . This convergence of the velocity of the failure wave front towards the shock front 
velocity supports the theoretical description of the failure wave as a “delayed failure” with the limit 

CVV < CVV >

BVV >
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“delay time” Dτ  corresponding to the “peak time” in the blow-up self-similar solution shown. Dτ
represents generally the sum of the induction time Iτ  - the time of the formation of the spatial 
distribution of damage close to the self-similar profile, and the “peak time” �τ  - the time of the 
“blow-up” damage kinetics. A steady-state regime for the propagation of failure wave fronts can be 
linked with the successive activation of “blow-up” dissipative structures with the condition 

�D ττ ≈ .

Fig. 3: Failure wave in the symmetric Taylor test on fused-quartz rods 

This experiment provides one step towards validating the failure wave phenomenon as the 
consequence of the generation of collective burst modes of mesodefects. In this theory, the failure 
waves represent the specific dissipative structures (the "blow-up" dissipative structures) with “slow 
dynamics” in the microshear ensemble that can be excited due to the passing of the shock wave.  

Structural-scaling transitions and scaling laws in seismicity 

Scale analysis of the Earth core rupture gives the information concerning the large spectrum of 
scales: from few millimeters to some hundreds kilometers. It means that seismic events related to 
earthquakes are the consequence of blocks interaction in the large range of scales and the 
meaningful of laboratory tests to analyze the mechanisms related to the earthquakes. The 
understanding of role of collective modes in mechanisms of structural relaxation (plasticity and 
damage) can be considered as the basis for the interpretation of phenomenological scaling laws 
(Gutenberg-Richter, Omori, Bach), the prediction of criticality stages related to seismic events [7]. 
Frequency N-magnitude m scaling (Gutenberg-Richter law) for the after-shock sequence is observed 
in the large range of the earthquake power recorded on some temporal scale with magnitude 

)m(N,m ≥ : bma10)m(N −=≥ . Parameter b corresponds to the range 2.1b8.0 <<  and the constant 
a determines the logarithm of the earthquake number with magnitudes 0m > . This relation has also 

equivalent representation as the fractal distribution 2
D

CAN −= , where A is characteristic area of 
seismic ruptures due to the earthquakes, D is fractal dimension b2D =  with variation of D in the 
range 1.2D3.1 << . Seismic events under the earthquakes are characterized by the decay of after-
shocks according to the Omori law [7] ( )pcKN τ−= , where K , c and p are parameters 
( 1.00.1p ±= ). The existence of systematic delay times shows on the self-similar character of after-
shock dynamics. The correlation relation for temporal sequences of after-shocks generation in the 
form of the Omori law includes two characteristic times τ  and c , where c  plays the role of 
characteristic temporal scale in the Gutenberg-Richter law. The Bath law for aftershocks establishes 
the universality of magnitude difference mΔ between mainshocks with the magnitude msm  and 
maximum value of aftershocks with magnitude max

asm : max
asms mmm −=Δ ,which is practically 

independent on the mainshock magnitude, 2.1m ≈Δ . The features of ranged metastability, the 
power laws of main phenomenological laws, role of “noise” in the development of seismic events 
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give the impact to consider the link of seismic events with critical phenomena in out-o-equilibrium 
systems that reveal the property of the so-called self-organized criticality SOC [7]). The initiation of 
blow-up structures under auto-solitary transforming can be considered as the scenario of pre-shock 
sequence. The shear transfer by auto-solitary waves can initiate the blow-up regime for the minimal 
time that is close to c~ ττ . This regime corresponds to the limit case of spinodal decomposition 
under maximal depth of penetration into metastability area, when the resonance excitation of blow-
up structure can be realized on corresponding “critical nuclei” on the core fault. The resonance 
excitation of blow-up dissipative structure for the minimal time c~ ττ  can be identified with the 
main-shock. The number of seismic events corresponding to pre-shocks for the magnitudes 
exceeding some characteristic one is determined by the number of blow-up structures exciting on 
the set of scales )K,...2,1k(kLL fH ==  under the transforming of auto-solitary waves into blow-up 
structures in the �δ - critical point. The constant difference of main-shock magnitude msm  and 
maximum value of the after shock with magnitude max

asm  (the Bath law) is determined by the 
minimum stress increment providing the transition from the auto-solitary wave dynamics under 
realization of structural-scaling transition in the metastability range *� δδδ <<  to the resonance 
excitation of blow-up dissipative structures corresponding to the main-shock. Qualitative transition 
between two these regimes, that is caused by different nonlinear asymptotic explains the 
universality of magnitude difference on the main-shock amplitude. 

Summary 

Statistical theory allowed definition of order parameters for mesodefects ensemble and formulation 
of nonequilibrium potential as generalized Ginzburg-Landau expansion. Kinetics of parameters 
determines relaxation property during plastic slip and damage-failure transition. Generation of 
mesodefects collective modes is the consequence of nonlinear properties of solid with defects, leads 
to steady-state (auto-solitary) wave of shear transformation, blow-up kinetics of damage-failure 
transition. The role of collective modes was studied experimentally for the explanation of nonlinear 
crack dynamics, failure wave generation, interpretation of the empirical scaling laws in seismicity.  
The research was supported in part by grants of the Russian Foundation of Basic Research (07-01-
96004-�_����_�, 08-01-00699-�, 07-01-91100-	
��_�). 
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