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Abstract. In this paper, flexural failure of plain weave composites is studied using finite element 
modeling. Initially curved beam elements are used to model the warp and weft yarns of the unit cell 
of the plain weave composite. The effective material properties are obtained by the finite element 
model with periodic boundary conditions. The flexural failure of a single-ply plain-weave 
T300/LTM45 composite is estimated based on homogenized material properties. 

Introduction
Macro-mechanical properties of a woven composite depend on properties of fibre and matrix and 
their interactions. Material behavior of woven composites is quite different from that of 
unidirectional laminates, in which classical lamination theory (CLT) has been used. There are 
several homogenizing schemes available in the literature based on analytical and numerical 
techniques [1-6]. In CLT macro-mechanical properties of a laminate is obtained integrating the in-
plane properties of a single ply through the thickness. Direct application of CLT to woven 
composites yields significant errors. Although in-plane properties of these materials can be 
estimated accurately using CLT and its adapted forms, the corresponding bending properties lack 
accuracy particularly for one- or two-ply woven laminates. Recently Soykasap [7] obtained material 
properties of plain weave composites using finite element (FE) modeling. Initially curved beams 
were used to model resin infiltrated fiber bundles. It was estimated that direct application of CLT or 
adapted form of CLT using a mosaic model could result in errors of up to 200% in the maximum 
bending strains or stresses, and up to 400% in the bending stiffnesses. Karkkainen and Sankar [8] 
carried a FE analysis of a plain weave composite using representative volume element for failure 
initiation. Direct micromechanics method yielded higher flexural stiffnesses as much as a factor of 
2.9 compared to the results of FE analysis.  

This paper presents FE analysis for flexural behavior of woven composites considering the 
fiber and the matrix and their interactions. FE model using Abaqus program [9] is developed to 
predict the bending properties of plain-weave T300/LTM45 composite. Initially curved beam 
elements are used to model each infiltrated fiber bundle. The interlaced yarns are constrained at the 
crossover points kinematically, representing the bonding between the yarns, and transferring loads 
from one yarn to another. Kinematic constraints are imposed at the coupling nodes of the crossover 
points. Previous finite model studied by Soykasap [7] is extended to include periodic boundary 
conditions after successful application of a similar model for triaxially woven composites by Kueh 
and Pellegrino [10]. Geometrically nonlinear analysis of the model with periodic boundary 
conditions is carried out in order to obtain homogenized stiffnesses of the composite. The results of 
FE model are compared with published data.  

Material Properties
In a plain weave composite longitudinal and transverse yarns (called warp and weft) pass over and 
under each other alternately (see Fig.1).  The macro structure of the composite can be obtained by 
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assuming a repeating cell which is the smallest unit of the composite, and adding the unit cells 
longitudinally and transversely as many as needed. The unit cell consists of only two warp and weft 
yarns. The macro-mechanical properties of the composite can be estimated considering the unit cell. 
The composite is assumed to be balanced when the number of resin infiltrated fibres in warp and 
weft direction is equal, and hence material properties in both directions are the same. Plain-weave 
carbon reinforced plastic T300/LTM45 is considered for modeling [7].  T300/LTM45 has a fibre 
volume fraction of Vf=0.5, an areal density of 94 g/m2, a cured thickness of 0.11 mm. The material 
properties of T300 fibre and LTM45 resin are given in Table 1.  The material has no gap between 
the yarns, and has a low crimp angle of about 2 deg. 

Figure 1. Plain weave composite and 3D solid model of unit cell 

 T300 LTM45 
1E  [GPa] 230 3.1 

2E  [GPa] 14 3.1 

12G  [GPa] 9 1.1 

12� 0.2 0.41 
Table 1.Material properties of T300 and LTM45. 

The homogenized properties of the yarns can be obtained again by the contribution of the fibres and 
the matrix using the rule of mixtures as 

)1(11 fmff
y VEEVE ���                                                                                                              (1) 

where fE1 fibre longitudinal modulus, mE resin elastic modulus, fV fiber volume fraction. The rule 
of mixture yields the longitudinal modulus accurately but not the transverse modulus. For 
transverse modulus and shear modulus Halpin–Tsai equations are used as follows 
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reinforcement, depending on the geometry of the fibres, packing and loading; 2�	  is taken as  
recommended for circular sections. The shear modulus of the yarn is obtained taking 1�	  in the 
Halpin–Tsai equations as follows 
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where mG  and fG12  shear moduli of  matrix  and fibre, respectively. Major Poisson’s ratio is 
calculated using volume fractions, and minor Poisson’s ratio is obtained reciprocal relation as 
follows 
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The material properties of the yarn are calculated using data in Table 1 and Eqs. 1 to 5 as follows: 
yE1 =116.55 GPa, yy EE 32 � =6.54 GPa, yy GG 1312 � = 2.51 GPa, yy

1312 �� � = 0.305, y
21� = 0.017. 

Finite element model and flexure failure

The warp and weft yarns are assumed to have a sinusoidal form with a period of L=2.75 mm and an 
amplitude of t/4 in Fig.2. The unit cell is modeled by initially curved beams, representing the two 
warp and two weft yarns in Fig.3. The beams have the properties of the orthotropic yarns, and 
equivalent rectangular cross section with L/2×t/2 (1.375×0.055 mm). The ends of the beams are 
denoted as Pi’s, and to be used for boundary conditions. The interlaced yarns are constrained at the 
four crossover points, representing the bonding between the yarns, and transferring loads from one 
yarn to another. Kinematic constraints are imposed at the coupling nodes of the crossover points. 
Three rotational and three displacement degrees of freedom are constrained by eliminating the 
specified degrees of freedom at the coupling nodes in Abaqus. The mid-plane of the model is 
represented by dotted line. 

The boundary conditions of the unit cell are assumed to be periodic, because the unit cell of the 
composite is only a basic repeating unit of the macro structure, which is obtained by repeating the 
unit cell longitudinal and transverse as well as through the thickness as many as needed. The effect 
of boundary conditions on the woven composite with finite dimensions is eliminated by the periodic 
boundary conditions. The unit cell is homogenized as a thin plate based on Kirchhoff’s assumptions 
as used in CLT. The mid-plane strains ij
 and curvatures ij� are related to change of displacement 

k
iu� and rotations k

i
� of opposite boundaries as follows 

iij
k
i lu ��� 
    (6) 

iij
k
i l��� �
   (7) 

where il� is the distance between the two opposite nodes on the boundaries, representing the period 
along x or y direction.
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Figure 2. Schematic longitudinal cross section 

Figure 3. FE model of the unit cell 

The constitutive equations of the homogenized plate relate mid-plane force N and moment M
resultants to mid-plane strain and curvatures as follows  
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where A, B, D are matrices for extension, bending-extensional coupling, and bending stiffnesses. 
The periodic boundary conditions in Table 2 and 3 are applied to the nodes on the opposite side on 
the model. Four fixed dummy nodes that are not attached to any element of the model are defined as 
reference points RP1, RP2, RP3, and RP4 at the undeformed position of the boundary points P2, P4, 
P6, and P8, respectively. Then the boundary condition is taken as a constraint in Abaqus and the 
displacements or rotations are applied to the dummy nodes. In order to calculate A11, the first 
deformation mode is assumed, i.e. xxxx l�� /�
  and 0����� xyyyxxxyyy ���

  hence the 
resultant forces and moments become xxx AN 
11�  and 0����� xyyxxyy MMMNN . RP3 and 
RP4 are subject to prescribed displacement of x�  along x-direction, corresponding constraint 
equations for the boundary nodes on the warp and weft direction can be written as
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Table 2. Boundary conditions along warp direction.
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Table 3. Boundary conditions along weft direction. 

The model is meshed using two-node cubic beam elements B33 with an approximate element size 
of 0.01 mm. The total number of elements of the model is 1104. Static nonlinear analyses are 
carried out to find the stiffnesses. The stiffnesses are then obtained using the reaction forces and 
moments at the reference points and applying virtual work principal as in Table 4. 

The strains at any point in the homogenized plate according to CLT are calculated as follows: 

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

xy

y

x

xy

y

x

xy

y

x

z
�
�
�















0

0

0

                                                                                                                  (10) 

1420



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

where 0
 and � are mid-plane strains and the curvatures respectively. The maximum strain criterion 
assumes that material failure occurs when the in-plane strains along the principal material direction 
exceed the ultimate strains of the material as  
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where )()(  and ��
LL 

 are the longitudinal ultimate strains in compression and tension; )()(  and ��

TT 


are the transverse ultimate strains in compression and tension; and LT
  is the ultimate shear strain. 
When Bij is zero and the plate is subject to only longitudinal curvature x� , corresponding bending 
moment and strain become xxxx zDM �
� ��  and 11 . When a unidirectional laminated plate is bent 
along its principal material direction, the maximum strain occurs on the outer edges of the plates, 
hence at z= t/2. Therefore, the maximum moment can be obtained from the ultimate strain max

(which is equal to the smaller in magnitude of �

L
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L
 ) as tDM x /2 11max
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Table 4. Load cases and calculation of stiffnesses. 
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Results
Static nonlinear analyses are carried out to find the stiffnesses. The numerical results are given in 
Tables 5 and 6 along with published data. Since the bending-extensional coupling Bij is zero, is not
presented here. The effective stiffnesses of the plain weave composite were calculated analytically 
based on a mosaic model in [11]. As expected, in-plane properties are in agreement. The present 
stiffnesses are lower particularly for the stiffnesses 11A and 11D , but are expected to be more 
accurate because the crimp of the fibers and nonlinear effects were ignored in the mosaic model. 
Note that 26162616 ,,, DDAA  are zero in both the mosaic model and the present results and 12D is
small in the results. Present results are also compared with those of the direct application of CLT 
[7], 11D of which is very high with a factor of 4. Therefore CLT should not be used to obtain 
bending stiffness directly.   Adapted form of CLT as in the mosaic model is able to reduce the 
stiffness error significantly. The present result is in good agreement with that of Ref. [7], in which a 
similar FE model without periodic boundary conditions was used. Present model considers only the 
unit cell with periodic boundary conditions therefore the effect of modeling size does not appear, 
also it reduces modeling and computation time significantly.  

Bending moment versus maximum strain is given in Fig.4. In parallel to the bending stiffness, 
the ultimate moments of the single-ply composite are quite different. When max
 =0.015 is taken as 
the ultimate strain of the fiber, CLT yields a bending moment and curvature, which are higher and 
lower respectively with a factor of 4 compared with the FE results. 

2211 AA �
(N/mm) 

12A
(N/mm)

2616 AA �
(N/mm) 

66A
(N/mm) 

present 5955.9 470.2 0.00 352.5 
mosaic model [11] 6805.2 220.4 0.00 276.4 

Table 5. Homogenized in-plane stiffnesses of single ply T300/LTM45. 
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Figure 4. Bending moment vs strain. 
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2211 DD �
(Nmm) 

12D
(Nmm)

2616 DD �
(Nmm) 

66D
(Nmm) 

present 1.70 0.00 0.00 0.26 
mosaic model [11] 2.75 0.09 0.00 0.28 
FE  [7] 1.61 - - - 
CLT [7] 6.86 - - - 

Table 6. Homogenized bending stiffnesses of single ply T300/LTM45. 

Conclusions
A finite element model based on a unit cell of plain-weave T300/LTM45 composite is presented in 
this paper. The FE model uses initially curved beam elements to model the warp and weft yarns of 
the unit cell. Because the model uses only beam elements and periodic boundary conditions, it is 
simple yet captures the flexural stiffness accurately, also offers modeling ease and significant 
savings in computational time. Estimation of the flexural failure of the composite depends on the 
accurate estimation of the flexural stiffness of the composite. Direct application of CLT should not 
be used to predict the flexural failure as demonstrated. The present results are compared with those 
available in the literature. The model can also be extended for other weave styles as well as braided 
and stitched composites.  
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