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Abstract. In this contribution we present ideas how fatigue crack growth in anisotropic composite
materials can be predicted using the Griffith’ energy criteria for plane problems. We assume, that
the specimen under consideration is composed of two anisotropic materials with different elastic
properties. If the crack path is increased by a small crack shoot under an external load, recent
mathematical investigations show, that the change of the potential energy can be calculated by stress
intensity factors and some integral characteristics, if the crack and the boundary layer are not in
contact.
To predict the crack propagation process in a vicinity of the interface, calculations of stress intensity
factors are needed and therefor, one has to know the asymptotic expansion of the displacement field
near the crack tip, if the crack reaches the boundary layer between the two materials. An idea how
this can be done will extensively be discussed.

Introduction

The growing use of non-homogeneous anisotropic materials, e.g. composites, laminates or func-
tionally graded materials, in order to fulfill the requirements of modern engineering has given an
impulse to the study of fracture mechanisms in such structures. For means of a reliable fracture
mechanical assessment the simulation of crack propagation processes is necessary. Especially for
composites, the following behavior can be observed: When a crack tip touches an interface, the crack
can further propagate through the adjacent material, propagate along the interface or stop. From a
physical point of view the energy principle, already formulated by Griffith in 1921, can be applied
in anisotropic and inhomogeneous materials to compute the crack path and the behavior near the
interface:

A crack is growing in such a way that the total energy always is minimal.

The total energy Π is composed from the surface energy S and the potential energy U , the latter is
the difference of the elastic energy and the work performed by external forces.

For homogeneous solids, recent mathematical investigations showed the following: Suppose the crack
path is increased by a (small) crack shoot of length h, then the change of the potential energy can be
calculated asymptotically to [1]

ΔU = −1
2
K�

M(h)K+O(hN+1/2), h→ 0. (1)
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Thereby K denotes the vector of stress intensity factors, N is the number of terms used in the
asymptotic decomposition of the displacement field near the crack tip and M(h) is a symmetric
matrix, the so called energy release matrix (ERM). The ERM contains certain integral characteristics
depending on the geometry of the specimen and the crack shoot as well as the elastic properties of
the material. All entries of ERM can be calculated numerically up to sufficient precision. Using
the asymptotic energy release rate the kink angle of a crack can be determined in arbitrary plane
anisotropies and the crack path can be approximated by polygons piecewise.

If the specimen under consideration is composed of two materials with different material properties,
the same formula for the change of potential energy holds, if the crack and the boundary layer are
not in contact. In a composite material the correct calculation of stress intensity factors and the ERM
is a bit more complicated as in the homogeneous case, even if the crack tip has large distance to the
interface. Nevertheless, formula (1) can be used to compute the crack path away from the contact
surface.

As mentioned, the behavior of the crack near the boundary layer is of importance. Recent results,
e.g. [2], show that stress intensity factors can go to zero or grow up to infinity if the crack tip is in a
vicinity of the contact surface, depending on the material properties. Numerical computations can
only approximate this and are very extensive. To determine the behavior of the developing crack
path, one has to know the asymptotic expansion of the displacement field, if the crack tip is on the
interface. But there, the singular behavior of the displacement field changes and is not known yet for
arbitrary anisotropies.

In the following, we discuss ideas to detect the influence of the inhomogeneity on the developing
crack path. Introducing a small parameter in the material properties, which can be interpreted as a
measure for the level of inhomogeneity, we single out formulae for the correct numerical calculation
of stress intensity factors in a composite first. The influence of the inhomogeneity will be shown.
Carrying forward this idea of an inhomogeneity-parameter, we present how the asymptotic behavior
of the displacement field can be calculated, if the crack tip is on the contact surface. Using methods
of asymptotic analysis, we finally derive formulae for the behavior of stress intensity factors near the
interface, only by knowing the elastic moduli of the two materials.

Formulation of the problem

Let Ω ⊂ R
2 be a bounded, polygonal domain with outer boundary Γ, composed of two linear

elastic homogeneous solids Ω0 and Ωδ with different material properties. For simplicity, we assume
that the boundary layer is at x1 = 0. Then the Hooke-tensor of this composite solid is piecewise
smooth with

A(x) :=

{
A0, x1 < 0,
Aδ, x1 ≥ 0,

where A0 and Aδ are constant, containing the elastic moduli ofΩ0 andΩδ. To investigate the influence
of the inhomogeneity on the crack propagation process, we introduce a small parameter δ and assume

Aδ = A0 + δA1, |δ| < 1.

Here, Ak are symmetric positive definite matrices containing the elasticity constants ak
ij , k = 0, 1,

i, j = 1, 2, 3. The matrix Aδ is assumed to be positive definite also. For isotropic materials there
holds

ak
11 = ak

22 = λk + 2μk, ak
21 = λk, ak

33 = μk, ak
31 = ak

32 = 0, k = 0, 1,
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and λk, μk are the Lamé-constants ofΩk. For small parameter δ, the inhomogeneity can be understand
as a perturbation of the material and δ can be interpreted as a measure for this perturbation. This is a
first step to model functionally graded materials or other more complex structures.

Our main interest is the behavior of a rectilinear edge cut

Ξh := {x ∈ Ω : x1 ≤ −h, x2 = 0}, h ≥ 0, Ωh := Ω \ Ξh,

where the crack tip is close to the boundary layer and h assumed as small. We consider the problem
of 2-dimensional elasticity theory:

−∇ · σ(uh;x) = 0, x ∈ Ωh,

σ(uh;x) · n = 0, x ∈ Ξ+
h ∪ Ξ−h ,

σ(uh;x) · n = p(x), x ∈ Γ.

Here, uh is the displacement field, p is the vector of surface load, n the outward normal vector and
with Ξ±h we denote the crack faces, assumed to be stress-free. On the contact surface

Υ := {x ∈ Ω : x1 = 0}
the displacement field uh fulfills the jump conditions

uh(0−, x2)− uh(0+, x2) = 0,

σ1k(uh; 0−, x2)− σ1k(uh; 0+, x2) = 0, k = 1, 2.

Moreover, we assume, that the load is self-balanced and fulfills the compatibility conditions∫
Γ

p(x) · v(x) ds = 0

for all rigid motions v = a+ b
(

x2

−x1

)
, a ∈ R

2, b ∈ R. For the strain-tensor with components

εij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, i, j = 1, 2

we use the vector notation

ε(u;x) =

(
ε11(u;x), ε22(u;x),

√
2ε12(u;x)

)�
.

The stress- and strain-tensors are connected by Hooke’s Law:

σ(u;x) =

(
σ11(u;x), σ22(u;x),

√
2σ12(u;x)

)�
= A(x) · ε(u;x).

For abbreviation, we set

σδ(u;x) := Aδ · ε(u;x), |δ| < 1,

σ1(u;x) := A1 · ε(u;x).
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Figure 1: The inhomogeneous solid Ωh

Asymptotics of the displacement field

If the crack is not in contact with the boundary layer, the displacement field uh has an asymptotic
expansion of the following well know type near the crack tip [3]:

uh(x̂) = r1/2
(
KI(h)Φ

1(ϕ) +KII(h)Φ
2(ϕ)

)
+ . . . , r → 0, (2)

where x̂ = (x1+h, x2)
� are local coordinates at the crack tip and (r, ϕ) associated polar coordinates.

KI(h) and KII(h) are the stress intensity factors, depending on h and, of course, on the inhomogene-
ity . Φj are smooth functions, depending only on the angle ϕ. The functions

Xj(x̂) = r1/2Φj(ϕ), j = 1, 2,

are solutions of the homogeneous elasticity problem in the whole plane with a semi-infinite cut

−∇ · σ0(Xj; x̂) = 0, x̂ ∈ R
2 \ Λ, Λ := {x̂ : x̂1 ≤ 0, x̂2 = 0},

σ0
12(X

j; x̂1, 0) = 0, σ0
22(X

j; x̂1, 0) = 0, x̂1 < 0.

This functions are called eigenfunctions of the elasticity operator and depend only on the material
properties of Ω0. Moreover, there exist singular eigenfunctions of the elasticity operator of the form

Y j(x̂) = r−1/2Ψj(ϕ), j = 1, 2,

fulfilling the normalization condition∫
γ

(
σ0(X i;x) · n(x)) · Y j(x)− (

σ0(Y j;x) · n(x)) ·X i(x) ds = δi,j, i, j = 1, 2,

where δi,j is the Kronecker symbol and γ is a smooth path around the crack tip, starting in Ξ−h , ending
in Ξ+

h and lying in Ω0. for more details see e.g. [4],[5]. If the specimen under consideration is
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homogeneous (δ = 0, for example), stress intensity factors can be calculated with the help of these
singular functions [6],[7]:

Kj(h) =

∫
γ

p(x) · Y j(x1 + h, x2) ds−
∫
γ

uh(x) ·
(
σ0(Y j;x1 + h, x2) · n(x)

)
ds,

j = 1, 2, h > 0. Using Green’s formula, this relation can be extended to the inhomogeneous case:

Kj(h) =

∫
Γ

p(x) · Y j(x1 + h, x2) ds−
∫
Γ

uh(x) ·
(
σ0(Y j;x1 + h, x2) · n(x)

)
ds (3)

−δ

⎛
⎝∫

∂Ωδ

(
σ1(uh;x) · n(x)

) · Y j(x;x1 + h, x2) ds

⎞
⎠ , j = 1, 2. (4)

This relation exactly shows the influence of the parameter δ on the stress intensity factors. We
emphasize, that Y j only depend on the material properties of Ω0. Eigenfunctions are known exactly,
if the material is isotropic. For some special classes of anisotropic materials, explicit formulae
for Xj and Y j are given in [8] and for all other anisotropies, eigenfunctions can be computed
numerically up to arbitrary precision. The stress intensity factors can be calculated very precisely
using formula (3). Only the displacement field has to be computed numerically, for example by the
Finite-Element-Method. For more details we refer to [9].

Asymptotics of the displacement field on the boundary layer

If the crack reaches the interface line (h = 0), the asymptotic expansion (2) of the displacement
changes. The expansion still has the structure [4]

u(x; δ) = Kδ
I X

1(x; δ) +Kδ
IIX

2(x; δ) + . . . , x→ 0.

The functions Xj(·; δ) are solutions of the homogeneous elasticity problem in the whole composite
plane:

−∇ · σ(Xj(·; δ);x) = 0, x ∈ R
2 \ Λ,

σ12(X
j(·; δ);x1, 0) = 0, σ22(X

j(·; δ);x1, 0) = 0, x1 < 0.

They fulfill the jump conditions

Xj(0−, x2; δ)−Xj(0+, x2; δ) = 0, x2 ∈ R,

σ1k(X
j(·; δ); 0−, x2)− σ1k(X

j(·; δ); 0+, x2) = 0, k = 1, 2.

For small parameter δ, these functions will not differ a lot from Xj of the homogeneous case. To
calculate Xj(·; δ), we use the ansatz

Xj(x; δ) = r1/2+αjδ+...
(
Φj0(ϕ) + δΦj1(ϕ) + . . .

)
, j = 1, 2, (5)

where αj are constants. Expanding this expression in a power series, a short calculation shows

Xj(x; δ) = r1/2Φj0(ϕ) + δ
(
αj ln(r)r

1/2Φj0(ϕ) + r1/2Φj1(ϕ)
)
+O(δ2)
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and we are only interested in the first terms of this expansion. Taking into account this structure, we
look for the first angular parts Φj0 as a combination of the angular parts of the homogeneous case:

r1/2Φj0(ϕ) = r1/2

2∑
p=1

Bj
pΦ

p(ϕ) =
2∑

p=1

Bj
pX

p(x).

Hence, in a first step, it remains to compute the matrix B = (Bj
p)jp, the numbers αj and the

perturbation angular parts Φj1.

Further computations show, that the ansatz (5) can only work, if for αj and Bj the relation

αjB
j = S ·Bj

holds, where S is the matrix with components

Skp = −
2∑

j=1

(M−1)�kj

∫
γ

ε(Xp;x) · A1 · ε(∂1X
j;x) ds, k, p = 1, 2,

where

γ := {x : |x| = 1, x1 ≥ 0}
is the half-arc. Matrix M is composed of the constants from the relation [1],[10]

−∂x1X
j(x) =

2∑
k=1

MjkY
k(x), or Y k(x) = −

2∑
j=1

(M−1)�kj∂x1X
j(x).

We emphasize, that the functions Xj and Y k depend only on the material properties of A0.

Explicit formulae and behavior of the stress intensity factors

If Ω0 is an isotropic solid with

A0 =

⎛
⎝ λ+ 2μ λ 0

λ λ+ 2μ 0
0 0 2μ

⎞
⎠ ,

then Φj are known exactly,

Φ1(ϕ) =
1

4
√
2πμ(λ+ μ)

(−(λ+ μ) cos(3ϕ/2) + (λ+ 5μ) cos(ϕ/2)

−(λ+ μ) sin(3ϕ/2) + (3λ+ 7μ) sin(ϕ/2)

)
,

Φ2(ϕ) =
1

4
√
2πμ(λ+ μ)

(
(λ+ μ) sin(3ϕ/2) + (5λ+ 9μ) sin(ϕ/2)

−(λ+ μ) cos(3ϕ/2) + (λ− 3μ) cos(ϕ/2)

)
,

and there holds

M11 = M22 =
λ+ 2μ

2μ(λ+ μ)
, M12 = M21 = 0.

The matrix S can be computed directly and the computation of αj and Bj is only to calculate eigen-
values and eigenvectors of a 2× 2-matrix. If A1 is the Hooke-tensor of an orthotropic material,

A1 =

⎛
⎝ a11 a21 0

a21 a22 0
0 0 2a33

⎞
⎠ ,
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we find

α1 =
λ2(a11 − 2a21 + a22 + 4a33)− 2λμ(a11 + 2a21 − 3a22 − 4a33)

32πμ(λ+ μ)(λ+ 2μ)

+
μ2(a11 + 6a21 + 9a22 + 4a33)

32πμ(λ+ μ)(λ+ 2μ)

α2 =
λ2(a11 − 2a21 + a22 + 4a33)− 2λμ(−3a11 + 2a21 + a22 − 4a33)

32πμ(λ+ μ)(λ+ 2μ)

+
μ2(9a11 + 6a21 + a22 + 4a33)

32πμ(λ+ μ)(λ+ 2μ)

and

B1 =

(
1

0

)
, B2 =

(
0

1

)
.

This idea can be extended to more complicated geometries of contact surfaces.

Finally, the idea of introducing the parameter δ and ansatz (5) gives a way to present the behavior
of the stress intensity factors, if the crack tip is near the boundary layer. Using methods of asymptotic
analysis [4],[5], the following formula for the stress intensity factors holds:

KI(h) = O(hδα1+...), KII(h) = O(hδα2+...), h→ 0.

For small parameter δ this relation, very easy to handle, reflects the asymptotic behavior of stress
intensity factors and of the crack path near the interface. It extends the results from [2]. Depending
on αj , the stress intensity factors will go to zero or grow up to infinity or, if αj vanishes, they will
show a steady behavior. This is a key to decide, wether the crack can propagate through or along the
interface. But of course, for this decision one has to take into account properties of the contact zone
itself.

Conclusions

In this paper, an idea for the computation of quasi-static crack growth in anisotropic composite ma-
terials is discussed. Introducing a parameter in the material properties in order to measure the level
of inhomogeneity, formulae for the numerical computation of stress intensity factors are presented.
Proceeding with this idea, the asymptotic behavior of the displacement field can be calculated, if the
crack tip reaches the contact surface. Finally, the asymptotic behavior of the stress intensity fac-
tors is shown. In practical applications this results can be used to setting up specialised demands on
structural components.
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