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Abstract. The present investigation discusses several methods for parameter identification of the 
cohesive model. The constitutive behaviour, called traction-separation law, usually contains two 
parameters for each fracture mode: the cohesive strength, T0, and the critical separation, �0 (or 
alternatively the cohesive energy, �0). Three identification methods are presented: First, the 
parameters are determined by a numerical fitting procedure (an Artificial Neural Network is used in 
the present paper). Second, the parameters are correlated to fracture mechanics quantities and 
determined experimentally. Third, the cohesive model is used with the micromechanical 
background of ductile damage of metals, where the separation of the cohesive model can be 
correlated to the void growth mechanism. While the latter inevitably leads to triaxiality dependence 
of the cohesive parameters, the values are usually kept constant in the first two methods. It is 
discussed, whether the assumption of constant parameters holds for the application range of 
precracked structures under either plane stress or plane strain state. In addition it is investigated 
how the method of parameter fitting correlates with the other two more physically based methods. 

Introduction
The cohesive model was developed some 30 years ago as a numerical tool for the analysis of 
fracture problems [1]. Since then, many successful applications to a variety of materials and 
engineering structures have been performed, see e.g. the comprehensive overviews in [2][3]. 
Common to all versions of the model is that the constitutive behaviour is described by a traction-
separation law, which contains at least two parameters for each fracture mode: the cohesive 
strength, T0, and the critical separation, �0. The cohesive energy, �0, is often used alternatively to �0 
due to its mechanical association to fracture mechanics quantities. Differences in the application of 
the cohesive model exist especially in the shape of the traction-separation law and the way of 
parameter identification. However, for the practical application of the model to engineering 
structures it is of crucial importance to provide guidance to the user on how to identify the model 
parameters in a proper and standardized manner.  

In this investigation several different methods for parameter identification are discussed. The 
underlying intention of the model itself with respect to these methods is completely different. If the 
cohesive model is used as a phenomenological model with parameters that do not have any physical 
meaning, their identification can be performed using a fitting procedure [4]. An Artificial Neural 
Network is used in the present paper for this task [5]. Second, since the cohesive model describes a 
fracture process, the parameters can also be correlated to fracture mechanics quantities, e.g. the 
cohesive energy, �0, can be set equal to the J-integral at crack initiation, Ji [6], and the cohesive 
strength is a fracture stress, which is proposed to be determined from notched tensile bars in [6]. 
Third, the cohesive model can also be used with a micromechanical background. For example if the 
ductile damage of metals is investigated, the separation process of the cohesive model can be 
correlated to the void growth mechanism and its degrading material properties [7][8]. While the 
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latter inevitably leads to triaxiality dependence of the cohesive parameters, the values are usually 
kept constant in the first two methods. It will be discussed in the present paper, whether the 
assumption of constant parameters holds for the application range of precracked structures under 
either plane stress or plane strain state. In addition it will be investigated how the method of 
parameter fitting correlates with the other two more physically based methods. 

Numerical approaches 

Cohesive model. The constitutive behaviour of the cohesive model utilised here is a threefold 
function T(�) for normal separation [6]: 
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The two additional model parameters, �1 and �2, are used to vary the shape of the traction-
separation law. The authors have implemented interface elements as user defined elements (UEL) 
into ABAQUS for 2D, shell and 3D models [8][9]. This implementation also accounts for tangential 
and mixed mode fracture, but throughout this paper, only mode I fracture is investigated. The 
extension of the model used here incorporates the dependence of the parameters �0 and T0 on 
triaxiality, h eqh � �� , which is explained in more detail in [8]  

 
Micromechanical model for ductile damage. The failure mechanism of ductile metals is 
characterised by void nucleation, growth and coalescence. A simple method to model this damage 
process is the plastic potential derived by Gurson with its extensions by Tvergaard and Needleman. 
The potential is given by the well-known equation 
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where R is the flow strength of the material surrounding the void, q1, q2 and q3 are model 
parameters and f* is a damage variable, which is a function of the void volume fraction, f : 
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The two parameters � and fc are additional model parameters. The evolution of the void volume 
fraction consists of void growth and void nucleation, both driven by plastic straining: 
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Together with an initial void volume fraction in the virgin material, f0, and the three parameters 
for void nucleation, sn, �n, fn, the model contains 9 parameters. The equations have been 
implemented in the finite element system ABAQUS [7] as a user defined material (UMAT). 

 
Determination of triaxiality dependent parameters from GTN unitcell simulation. For the 
micromechanically based identification of the cohesive parameters, a single axisymmetric element 
with GTN material as described above is pulled under various constant triaxialities. From these 
simulations, stress versus displacement curves as shown in Figure 1 can be extracted and serve as 
traction-separation laws in the following. The maximum value in each curve characterizes the 
cohesive strength, T0, which is plotted as black symbols in Figure 2. The values are approximated 
by an exponential function of the form 
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see the black line in the figure. In a second step the complete separation curves are approximated by 
eq. (1) for each triaxiality, which leads to a triaxiality dependent separation energy as shown by the 
red line in Figure 2. 
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Figure 1: Stress-displacement diagram of an 
axisymmetric GTN single element simulation 
under various triaxialities. 

Figure 2: Resulting cohesive strength (black) 
and separation energy (red) with respect to 
triaxiality. 

 
Artificial Neural Network: An artificial Neural Network (ANN) can be used for solving complex 
inverse problems in computational mechanics. The underlying theory is fairly simple: An input 
vector, Xi, is transformed into the output vector, Yi, by an interconnected network of neurons 
assorted in layers as shown in Figure 3. Each single neuron has multiple inputs, yi, drawn as arrows 
in the figure, and a single output, vj, which is a linear combination of these inputs, written as 
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The variables wij are synaptic weights. Connections exist from one layer to the next (called feed 
forward), and the output of layer i serves as input for layer i+1 after transformation using a smooth 
sigmoidal function as given also in eq. (6). 

 

 
Figure 3: Sketch of a multilayered Artificial Neural Network (from [5]) 

 
The ANN is trained by multiple sets of known correlations between input and output vectors in 

order to identify the parameters wij and wj. The internal minimisation strategy behind that 
identification procedure is called “resilient back-propagation”, described in [5]. As a result 
approximate solutions for unknown output vectors can be calculated.  

In the present case the ANN is used to develop a relation between the shape of a curve of 
experimentally measurable quantities such as force versus elongation, and the cohesive parameters, 
T0 and �0. Therefore, the input for the neural network are a small number of sampling points Fi at 
distinct elongations (the number of sampling points equals the number of input neurons) and the 
two cohesive parameters are the output neurons, so the number is always 2. The number of layers is 
chosen to be 3. Training sets are generated by a number of simulations with different cohesive 
properties and the respective structural response.  

After training, the Neural Network is used to determine the cohesive parameters by using the 
experimental data as the input vector, for which the ANN then calculates the output 

Examples
In the following subsections, several tests on fracture specimens are evaluated and simulated using 
at least two out of the three methods for parameter identification: 

1. Parameter identification by fracture mechanics considerations 
2. Numerical fitting of the parameters using ANN. 
3. Micromechanical considerations  
The approaches 1 and 2 can be combined since the fracture mechanics considerations may lead 

to starting values for the numerical optimization as well.  
 

Fracture specimens made of Aluminium sheet. Various specimen types have been machined of 
an Al5083 T321 metal sheet (thickness 3 mm), from which the small C(T) and M(T) specimens are 
discussed here. Detailed studies on these specimens are given in [11],[12]. Since the specimens are 
thin-walled and break in a slanted fracture mode, plane stress conditions can be assumed. Even 
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though many specimens have been tested, the crack initiation point cannot be specified accurately, 
so a range of Ji = 7…13 kJ/m² is given. The cohesive strength is proposed to be determined by 
testing of round notched bars in [6], which is apparently not possible in sheet material. However, 
the fracture stress of the smooth tensile bar is 485 MPa with failure occurring in a slanted fracture 
mode, the same in which the fracture specimens failed. The stress value can be used as a lower 
bound for the cohesive strength, since the maximum local stress at fracture must be higher than this 
section average value. 

In [11] the cohesive model parameters have been determined by trial and error already, leading 
to �0 = 10 kJ/m² and T0 = 560 MPa. In this paper, more accurate values will be determined by an 
ANN training with parameter sets in the neighbourhood of the previously determined values for the 
C(T) and the M(T) specimen separately. The values used for training of the ANN (black symbols) 
and the eventually identified optimized values for the various specimens (red symbols) are shown in 
Figure 4. Even though a single set of constant parameters has been used to simulate all fracture 
specimens in the previous publications, the difference of the values is not negligible. 

As shown in Figure 1 already, a higher triaxiality leads to a higher cohesive strength and a lower 
separation energy. Thus it can be deduced from the optimized parameters that the triaxiality in the 
C(T) specimen is higher than in the M(T) specimen, which is confirmed by Figure 5, where the 
triaxialities ahead of the crack tips of C(T) and M(T) specimens are shown for crack initiation and 
for �a = 4 mm. 
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Figure 4: Domain diagram of cohesive 
parameters, T0 and �0 for identification. Black 
symbols are simulations performed for training 
of the ANN, red symbols are the retrieved 
parameters for C(T) and M(T) specimen, resp. 

Figure 5: Triaxiality ahead of the crack tip for the 
C(T) specimen (solid line) and M(T) specimen 
(dashed line), at initiation (black) and at 
�a = 4 mm. 

 
The results of the simulations with the optimized parameters are shown in Figure 6 for the C(T) 

and the M(T) specimens. An exceptionally close agreement is achieved with the values shown in 
Figure 4. However, since only a single fracture specimen should suffice for the determination 
procedure, it is necessary to know, how large the error is when the M(T) specimen is simulated 
using the parameters determined with the C(T) specimen and vice versa. These results are also 
shown in Figure 6. The difference is visible but still in fairly good agreement with the experiment. 
It must be noted that the R-curve examined from the M(T) simulation using the parameters of the 
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C(T) specimen is conservative (that is, lower), whereas the one of the C(T) specimen using the 
M(T) parameters is not. 
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Figure 6: �5 R-curves for C(T) specimens (left) and M(T) specimens (right) with parameters 
optimized for each specimen type. Additionally shown: R-curves using parameters of the respective 
other specimen.  

 
C(T) specimens made of an RPV steel. A large database containing experimental data from 
fracture mechanics tests on a ferritic pressure vessel steel has been generated by European research 
laboratories [10]. In [13], the C(T) specimen was analyzed by a 3D finite element analysis using the 
cohesive model. As mentioned before Ji might be used for the cohesive energy, �0. The values 
determined for Ji (actually J at �a = 0.05…0.1 mm) were 70…150 kJ/m². Notched bars, which are 
necessary to determine the cohesive strength, T0, were not available. A parameter study was 
therefore performed with a starting value of �0 = 70 kJ/m² and T0 in the range 1700…2100 MPa 
(more than 3 times the yield strength, which is a presumable value for this kind of steels). It turned 
out that the �0 value was too high, and the optimized values shown in Figure 7 were �0 = 35 kJ/m² 
and T0 = 2100 MPa. The reason for this discrepancy can be explained, if the Ji/�0 ratio is plotted 
versus the ratio T0/�Y. As shown in Figure 8, the separation energy equals the J-integral at crack 
initiation, when the value of T0 approaches the yield strength, i.e. for rather brittle materials. 
However, if the value of T0 is high, the ratio is in general much larger than one. This reveals that the 
equation Ji = �0 is too simple and can only be applied to purely elastic materials, but it can be used 
as an upper bound for �0. 
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Figure 7: Force vs. COD (left) and J R-curve (right) of RPV steel. Experiment (symbols) and 3D 
cohesive model simulation. 
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Figure 8: Ratio of Ji/�0 plotted versus the ratio T0/�Y, which shows the influence of plasticity on the 
crack driving force. 

 
Fracture specimens made of a structural steel. In ref. [8] a study was performed on a ferritic 
steel designated as FeE 460 using micromechanically based cohesive parameters as described in the 
previous section. The result of this investigation is shown in Figure 9. From these two figures, 
which show the J-R curves for a C(T) and a M(T) specimen, respectively, several conclusions can 
be drawn. First, the GTN simulation is in close agreement to the experiment for the C(T) specimen, 
but not for the M(T) specimen. Second: The cohesive model simulation with triaxiality dependent 
parameters is somewhat jagged, which results from the strong changes in the triaxiality ahead of the 
crack tip, which do not occur for the M(T) specimen. However, the curve is a good approximation 
of the experiment in both cases. If the cohesive parameters are kept constant, a very good 
agreement with the experiment is achieved for the C(T) specimen, for which the parameters are 
optimized, and still a rather good (but non-conservative) agreement is reached for the M(T) 
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specimen. However, it must be noted that the tendency is different from the results for the Al5083 
material shown above, where the R curve for the M(T) specimen was conservative with parameters 
taken from the C(T) specimen. The reason for this discrepancy becomes visible if the parameters 
are plotted in a domain diagram, see Figure 10. For an unknown reason the optimal separation 
energy for the C(T) specimen is very high and the cohesive strength is rather low, as commonly 
seen only at a very low triaxiality. In addition, one can see that the parameter values determined 
from the M(T) specimen do not coincide with a point on the curve for the triaxiality dependent 
parameters, but are close to the values for h � 1.7. 
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Figure 9: J R-curves for C(T) specimen (left) and M(T) specimen (right). Experiments (symbols) 
are compared to several simulations. 
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Figure 10: Domain diagram of the cohesive parameters for a ferritic steel. The black dots show the 
sets used for ANN training, and the curve shows the parameters for the triaxiality dependent model. 
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Conclusions
Three methods have been presented here to determine the cohesive parameters for crack growth 
simulation of different materials. 

The first method, that is the experimental determination of cohesive parameters, did not always 
lead to acceptable results. The crack driving force at initiation, Ji, is in general not equal to the 
separation energy, but contains additional energy dissipated by plasticity. The cohesive strength, T0, 
might be determined by round notched bars, but this is difficult if only thin sheets are available. 
Smooth round bars or flat tensile bars underestimate the cohesive strength if local necking occurs 
before fracture. However, together with the numerical fitting, fracture mechanics based parameters 
are useful as a starting point for the optimization. With the combination of these two methods, in all 
simulations a very close agreement between experiment and simulation could be achieved, and the 
transferability of the parameters is also fairly good. 

The parameter identification using a micromechanical model gives also good results, and the 
transferability seems to be better than with constant parameters, but at the cost of robustness of the 
procedure. In addition, a second model has to be used, which is not favourable in engineering 
applications.  
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