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Abstract. This work presents a simple way how to estimate the uniaxial tensile strength on the 
basis of the theoretical shear strength calculations taking its dependence on superimposed normal 
stress into account. The atomistic simulations of the shear and tensile deformations in cubic crystals 
are performed using first principles computational code based on pseudo-potentials and plane wave 
basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a 
special relaxation procedure controls the stress tensor. Obtained dependence of the ideal shear 
strength on normal tensile stress seems to be almost linearly decreasing for all investigated crystals. 
Taking these results into account, the uniaxial tensile strength values in 110  and 111  directions 

were evaluated for selected fcc crystals.  

Introduction 

Uniaxial tensile tests belong to the easiest experimental strength measurements. Results of such 
experiments yield usually values orders of magnitude lower than theoretical predictions. The first 
attempts to calculate the theoretical tensile strength assumed that the crystal breaks by a brittle 
fracture along a plane perpendicular to the loading axis (tearing stress) [1-3]. Even in many later 
studies based on semiempirical [4] or first-principles [5,6] atomistic approaches was the tensile 
strength calculated as a tearing stress. Later on, Born’s criteria for stability of solid crystals were 
modified to predict the first onset of instability [7]. However, this approach is computationally very 
time-consuming. Recent theoretical studies based on atomistic modelling as well as experiments on 
whiskers [3] suggested that rupture of many perfect crystals is related to reaching the shear strength 
in some convenient shear system rather than approaching the maximum tensile stress that leads to 
tearing. An illustration of such shear system is in Fig.1. 
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Fig.1 Illustration of shear system in a crystal sample under tensile stress. The angles φ and λ are 

measured between crystal axis and normal vector n and shear direction d, respectively. 
 
When the crystal is subjected to tensile stress σ, certain slip systems can be exposed to a 

combination of shear and tensile (normal to the shear plane) stresses. The displayed vectors n and d 
determine the vertical to the shear plane and the shear direction, respectively. The angles φ and λ in 
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Fig.1 are measured between the vectors and the crystal axis. The normal stress σn can be expressed 
by means of the tensile stress σ and the angle φ as 

φσσ 2cos=n . (1) 

Assuming that some shear instability can precede the onset of tearing, the tensile strength maxσ  can 

be estimated from the corresponding theoretical shear strength maxτ using the relation 

λφ
τσ

coscos
max

max = , (2) 

where maxσ  represents a tensile stress value at which the shear stress in a convenient shear system 

reaches its maximum ( maxτ ). The relation is similar to the well known Schmid’s law 

λφστ coscosyc = , (3) 

that expresses the relation between the critical resolved shear stress cτ  required to move 

dislocations across the slip plane and the yield stress yσ  in crystals with defects. However, the 

equation (2) holds only for a perfect single crystal. Another significant difference lies in the 
influence of a normal stress on the shear stress. Whilst, in the Schmid’s law, cτ  is considered to be 

independent on the normal stress, at least in fcc crystals, the influence of tensile (as well as 
compressive) nσ  on the shear strength has been reported recently for fcc and bcc metals [8-10] and 

for diamond ceramics [11]. In this paper, the influence of normal stress is studied particularly in the 
region of tensile stresses and the obtained results are used for a simple estimate of maxσ . 

Computational procedure 

Six fcc crystals (Al, Ni, Cu, Ir, Pt and Au) were subjected to homogeneous shear deformations in 
211 {111} slip system in two distinct ways. In the first approach (from now on called rigid-

planes approach) we keep the shear planes undistorted during the whole shear process. Only the 
interplanar distance is allowed to change in order to set the normal stress to a prescribed value. This 
approach is consistent with previous calculations of Kelly et al. [12] as well as with our recent 
study [8]. However, the present work utilizes calculated stress tensor, whereas the study in Ref. [8] 
was based on calculation of the total energy. 

The other approach (relaxed-planes) lies in a full relaxation of the stress tensor (including 
possible in-plane stresses) and the computational procedure goes the same way as described in 
Ref. [9]. In both approaches, the main attention was paid to the tensile region of normal stresses. 
The homogeneous shear was simulated using a single atom in the simulation cell. 

The studied shear system is illustrated in Fig. 2. For the sake of clearness, only two adjacent 
planes are displayed. When the upper plane A moves to the right ( [ ]211  direction) their atoms 
must overcome a high energy barrier related to over-passing the atoms in the B plane. The final 
position of the selected atom in plane A is marked by the dashed circle in Fig. 2. The corresponding 
structure has fcc symmetry of an opposite stacking order (with respect to the original state). The 
same state can be reached moving the A plane to the left. In this case, the corresponding energy 
barriers as well as the related stresses are substantially lower. Although the plane shift then cannot 
continue the same way (because of the consequent higher energy barrier), the instant of 
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approaching the shear strength is the first onset of instability. Thus, the computed maxσ  values can 

be considered to be the theoretical tensile strengths. 
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Figure 2: Two adjacent {111} A (open circles) and B (solid circles) planes in fcc crystals for 
illustration of the 112 {111} shear system. 

 
For the calculations of Hellman-Feynman stress tensor, we utilized the Vienna Ab initio 

Simulation Package (VASP) [12]. This code uses plane wave basis set and ultra-soft pseudo-
potentials of Vanderbilt type [14]. In case of Ni, the projector augmented-wave potential [14] was 
used instead along with the spin-polarized calculations (to take the ferromagnetic ordering in Ni 
into account). The exchange-correlation energy was evaluated using either the local density 
approximation (Pt, Au) or the generalized-gradient approximation (Al, Ni, Cu, Ir). The 18x18x18 k-
points mesh was used in all our calculations with the exception of Al, where a finer mesh 31x31x31 
was used. The solution was considered to be self-consistent when the energy difference of two 
consequent iterations was smaller than 10 μeV. 

Results and discussions 

The computed )(max nστ  functions from the rigid-planes approach are displayed in Fig. 3 for the 

region of tensile normal stresses up to 20 GPa. In order to fit conveniently all the data points into 
one diagram, the maxτ  values for Ir are divided by 3. 
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Figure 3: Theoretical shear strength maxτ  as a function of normal stress nσ  in the rigid-planes 

approach. Dashed lines represent linear regressions of the displayed data points. 
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As can be seen from the regression lines, the functions are almost linearly decreasing and can be 
expressed as 

nr kσττ −=max , (4) 

where k expresses slope of the regression lines and rτ  can be considered to be the theoretical shear 
strength in the absence of normal stress [8]. The regression parameters are collected in Table 1. 
 
Table 1: Regression parameters for [ ]211 {111} shear strength in both, the rigid-planes and the 
relaxed-planes approaches. 

Element rigid-planes relaxed-planes  
 τr k τr k TSS* 
 (GPa)  (GPa)  (GPa) 
Al 3.12 0.238 3.07 0.319 2.84 
Ni 5.64 0.139 5.05 0.123 5.05 
Cu 3.01 0.117 2.43 0.080 2.16 
Ir 17.1 0.223 17.3 0.249  
Pt 2.75 0.138 2.05 0.177  
Au 1.66 0.152 1.05 0.171 0.85 

           * Ref. [16] 
 
Comparing the computed data with previous results [8] one can see a good agreement in the τr 

values while more remarkable differences can be found in k values. They are probably caused not 
only by different assessment but also by the different selected range of interpolated data (with 
respect to normal stresses). The most remarkable disagreement in τr can be found for Pt (11%) and 
Au (19%). All the other values match the previous results within 5%. It should be noted, however, 
that a significant deviation from the linear trend was found formerly in the range of higher tensile 
stresses in the case of Ir [8]. 
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Figure 4: Theoretical shear strength as a function of normal stress in relaxed-planes approach. 
Dashed lines represent linear regressions of the displayed data points. 
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The results of relaxed-planes calculations are displayed in Fig. 4. Again, within the limited range 
of normal stresses, the )(max nστ  functions can be approximated by linear functions and their 

regression parameters were also added to Table 1. Comparing both approaches one can see that the 
full relaxation of stresses remarkably lowers the shear strength of Au, Cu and Pt. 

In order to estimate the theoretical tensile strength maxσ , the relations (1), (2) and (4) can be 

combined to the final form 

( )φλφ
τσ

coscoscosmax k
r

+
= . (5) 

The obtained maxσ  values (from both approaches) for uniaxial tension in [ ]110  and [ ]111  directions 

are listed in Table 2. Uniaxial tension was applied to the crystal in the most favorable representative 
of the family of symmetry-equivalent directions 110  and 111 . The tσ  values, that were collected 

from available literature, represent corresponding values of tearing stress. 
 

Table 2: The estimated theoretical tensile strengths maxσ  in 110  and 111  directions (in GPa) 

along with the available literature data for tearing stress tσ . 

Element maxσ : rigid-planes maxσ : relaxed-planes tσ  from literature 

 [ ]110  [ ]111   [ ]110  [ ]111    [ ]110  [ ]111  

Al 5.0 9.2  4.5 8.8   4.2 a  14.8 a  
Ni 10.0 17.1  9.1 15.4   11.7 a  39.3 a  
Cu 5.5 9.2  4.6 7.5   5.5 a  26.5 a  
Ir 27.6 50.4  27.1 50.6   26.5 b  43.5 b  
Pt 4.9 8.3  3.5 6.1      30.0 b  
Au 2.9 5.0  1.8 3.2   2.8 a  13.6 a  

a Ref. [4] 
b unpublished results 

 
It can be seen, that the predicted maxσ values for [ ]111  direction (obtained from both approaches) 

are substantially lower than the tearing stresses for all studied fcc crystals with the exception of Ir. 
On the other hand, the tearing stresses in [110] direction were computed so low that the predicted 

maxσ values are of a comparable magnitude. 

 
Table 3: The estimated tensile strength 0=kσ  without the correction by the normal stress (in GPa). 

Element rigid-planes relaxed-planes 
 [ ]110  [ ]111  [ ]110  [ ]111  

Al 6.6 9.9 6.5 9.8 
Ni 12.0 18.0 10.7 16.1 
Cu 6.4 9.6 5.2 7.7 
Ir 36.3 54.4 36.7 55.1 
Pt 5.8 8.8 4.4 6.1 
Au 3.5 5.3 2.2 3.2 
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In the case of k = 0, maxσ would be calculated simply as the shear strength divided by the Schmid 

factor λφ coscos . To evaluate the impact of the normal stress influence, results for k = 0 were 

listed in Table 3. The corresponding values 0=kσ  are higher than maxσ  in all cases. The correction 

by the normal stress reduces the predicted tensile strength mostly by 5–10% in case of 111  

tension whereas a more remarkable reduction (mostly by 20–30%) can be found for 110  tensile 

direction. 

Summary 

The theoretical tensile strength was estimated from the theoretical shear strength and its 
dependence on normal stress in a selected shear system. The dependence was calculated from first 
principles as a linearly decreasing function of tensile normal stress for all studied fcc crystals. The 
estimated tensile strength values in [ ]111  direction were found lower than the stresses necessary for 
tearing in most of the studied elements (except in Ir). On the other hand, the tensile stresses in [110] 
directions are well comparable to the corresponding tearing stresses. Considering the influence of 
normal stress on the shear strength reduces the tensile strength by 5–10% in case of 111  tension 

and by 20–30% for 110  tensile direction. 
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