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ABSTRACT Offcuts in cutting are formed in one of two modes, viz: shear or bending, depending on 
conditions. The former tends to be produced by tools having large included angles (that is, small or negative 
rake angles) and is familiar in workshop machining and sawing. The latter occurs with knife-like tools having 
small included angles (large rake angles), and is found in thin slicing operations such as microtoming and in 
the process of making wood veneer. Recent improvements in modelling to predict cutting forces are 
reviewed, in particular incorporation of significant work of surface separation (fracture toughness) which 
provides answers unresolved questions, especially for offcut deformation by shear. The treatment is applied 
to offcut formation by bending for both elastic and irreversible chip deformation and compared with 
experimental results from veneer peeling.  
 
1.Introduction  The cutting of solids is a branch of fracture mechanics. Indeed the so-called wedge-
opening-loading test, eg [1] to determine fracture toughness of materials is mechanically the same as the 
simple process of chopping wood along the grain with an axe, and the same as the process of veneer 
peeling in wood cutting with an inclined wedge. In a test to determine the toughness of adhesives, a wedge 
is driven along the interface between two ductile sheets glued together [2]. 
 
The difference between these two tests is in the behaviour of the rest of the solid away from the separated 
surfaces. In splitting concrete or wood the material is removed by combined elastic bending and fracture, 
and the broken pieces (offcuts) remain undistorted after cutting: the process can be analysed by elastic 
fracture mechanics. In that particular adhesive test (intended to study the behaviour of adhesives during 
extensive plastic deformation of the adherands) the material is bent plastically before and during separation, 
and is permanently curled afterwards: analysis requires elastoplastic fracture mechanics.  
 
In these sorts of process, where the angle of the wedge is about 20°, the principal mode of deformation 
accompanying separation is bending; the strains may be elastic or plastic depending on circumstances. At 
larger inclined wedge angles (say > 45°, but it depends upon the conditions), a change in mode of 
deformation occurs and it is energetically more favourable for deformation to take place by shear, primarily 
in a narrow band emanating from the tip of the wedge to the free surface, together with secondary shear 
along the tool face which gives curl to the offcut/chip. In this case, most of the deformation is irreversible, the 
offcut is permanently deformed and the process is one of elastoplastic fracture. Often the shear deformation 
is so great that elasticity may be neglected and the process analysed using rigid-plastic fracture mechanics. 
Large-angle wedge inclined tools are typical in metalcutting operations and are found in the geometry of saw 
blading. (In workshop parlance, it is the rake angle of the cutting tool that is customarily employed rather 
than the included angle of the wedge/tool).  
 
Analysis of all such processes may be performed using fracture mechanics but with the special feature that 
the location of the application of the load is moving towards any starter crack tip before cracking 
commences, and subsequently continues to move as separation proceeds, rather than remain fixed in 
relation to the starter crack tip. That is, in offcut bending cases, the wedge/tool is driven along the starter 
crack, widening the gap between the ‘arm’ and the cut surface until cracking begins. If subsequent cutting is 
steady-state, the surfaces separate at the same speed as that with which the tool moves forward, but 
unsteady cutting can occur in which the load initially falls because the crack jumps ahead and arrests, after 
which the load increases until the process is repeated all over again, producing a saw-tooth, cyclical, load 
vs. wedge position behaviour; (the stiffness of tool holders in practical cutting machines will also affect 
oscillations in cutting forces).  Similar arguments about crack stability apply to cutting in the alternative mode 
of irreversible shear deformation to the free surface.  
 
Of course, in practical cutting, there are no starter cracks in which the wedge/tool is inserted. Rather, the 
tool at first indents the material before cutting initiates. In the non-uniform stress and strain field surrounding 
the tip of the tool, cracks are initiated and the process of cutting starts up. The sharper the tool, the ‘more 
intense’ the stress and strain patterns, and the easier it is to initiate a crack, thus starting the separation 
process. Nevertheless, as we shall show later in this paper, modelling how a wedge proceeds along a 

  



starter crack, building up, or dissipating, strain energy in an ‘arm’ until the transition to splitting takes place, 
is informative in understanding the mechanics of cutting. 
 
Materials scientists have, for some time, employed cutting as a means of determining fracture toughness, 
particularly for soft and squidgy natural materials for which standard tests are difficult or impossible to apply, 
and in which work of separation predominates. In these tests, microtomes instrumented for forces are often 
employed. Metal cutters, on the other hand, have traditionally argued that fracture has no part to play in 
continuous chip formation because cracks are rarely seen at the tips of tools in the machining of ductile 
solids. Traditional metalcutting analyses therefore concern plasticity and friction only. It is strange that one 
body of workers considers that fracture is a necessary part of cutting mechanics and another body says not. 
The situation has been rationalised in a series of recent papers [3-7] where it was shown that incorporation 
of significant work of surface separation in even simple single shear plane models of orthogonal metal 
cutting answered many questions for which ‘plasticity and friction only’ analyses had no explanation. In 
particular, the inclination of the primary shear plane became material dependent which was long-known 
experimentally. Again, the role of the separation criterion in finite element modelling of cutting (which does 
not appear in algebraic analyses) was made clear.  
 
The important material parameter in cutting in the shear mode was shown to be the toughness (R)/shear 
strength (τy) ratio, which may be combined with the uncut chip thickness (i.e. depth of cut, t) to give the non-
dimensional parameter Z = (R/τyt). The new analysis predicts that for given tool angle, the cutting force Fx cut 
should vary linearly with t when Z is greater than about 0.1; and that the plot has a positive force intercept, 
over and above any contribution from rubbing on the rake face of the tool. For greater Z (smaller t in a given 
material) the plots curve downwards but still do not pass through the origin. Both intercepts are measures of 
the toughness, and the slope of the plots indicates the shear yield strength of the material. Friction may be 
estimated from the ratio of Fx/Fy. Application to results on beech wood is given in [8]. It was also shown that 
the different types of chip/offcut that can occur depend upon the value of Z [5]. Thus, for a given material 
and tool angle, increase in depth of cut leading to a reduction in the value of Z, can lead to a transition, from 
chip formation by shear, to splits in bending running far ahead of the tool tip. Alternatively, at fixed t and 
fixed tool angle, ‘more brittle’ materials having smaller (R/τy) and hence smaller Z, are more likely to split, 
but ‘more ductile’ materials having greater (R/τy) are more likely to be machinable with continuous 
chips/offcuts. Various authors have published combinations of tool angle and depth of cut at which different 
types of chip are produced in metals [9], plastics [10] and wood [11,12]. These patterns of behaviour may be 
explained in terms of the particular Z values [5], and include the formation of discontinuous chips/offcuts 
where, in formation by intense shear, partial or complete fracture also occurs within the chip along the shear 
plane.  
 
The present paper investigates the conditions under which offcuts are formed in bending. 
 
2. Forces on a Wedge-shaped Tool 
 
Central to all analyses are the forces on the tool. We follow Williams [2]− but with a change of symbols −  
where an inclined wedge simulates a sharp cutting tool forming a flat surface. The effective wedge angle 
(including the clearance angle beneath the wedge) is θ. The rake angle of the tool is α = (90 - θ)°. When the 
offcut is formed in bending, there is a contact force K normal to the wedge face at the tangent point to the 
beam; when the offcut is formed in shear, there are stresses over the region of contact which have a 
resultant force K acting on the wedge. In both cases, there will be a friction force µK opposing the motion of 
the offcut as it passes up the wedge, Figure 1a.  
 

 

 

 



 
The forces on the wedge parallel and perpendicular to the cut surface are Fx and Fy. Equilibrium gives 
 
Fx = K (sinθ + µcosθ) 
                                                                                                                                                                    (1) 
Fy = K (cosθ − µsinθ) 
 
We assume that all forces meet in a point, so that moment equilibrium is automatically satisfied. Dividing  
the first and second equations in (1) we obtain 
 
Fx/Fy = H tanθ                                                                                                                                              (2) 
 
where H = (tanθ + µ) / tanθ(1 − µtanθ)                                                                                                        (3) 
 
In books on metalcutting where formation of a chip in shear is considered, this analysis is done slightly 
differently: (i) instead of Fx, Fy and K, the resultant force Fres acting on the face of the wedge in contact with 
the chip/offcut is used with Fres = √(1 + µ2)K = √(Fx

2 + Fy
2); (ii) instead of µ, the angle of friction β is 

employed, where tanβ = µ; and (iii) instead of the wedge angle θ, the rake angle α is employed. It is easily 
shown that the ‘force circle’ of metalcutting theory is identical with these basic force equilibrium relations.  
 
3. Offcuts formed in Bending 
3.1 Elastic formation of offcut 
 
A block of material has a starter crack of length ao situated at a depth t below the surface, Figure 1a. A 
wedge is driven into the starter crack as shown, the location of the wedge before cracking commences is at 
some position distant x from the corner of the block. The length of the bent cantilever is thus a = (ao − x) and 
its elastic stiffness is Fy/u = 3EI/a3 where u is the deflexion of the beam at the contact point with the wedge, 
E is Young’s modulus and I is the second moment of area of the beam (I = wt3/12). Using (2) we have 
 
Fx (ao − x)2 = 3EIHtanθ (1−cosθ) / θ                                                                                                            (4) 
 
since ρ + (t/2) = u / (1− cosθ) = (ao − x) / θ  where for simplicity, we assume that ρ the radius of curvature of 
the beam is constant at any instant; this is not strictly correct for a cantilever, but the error will not be great 
for small deflexions. Equation (4) gives the force (Fx) ∼ displacement (x) relation for pushing the wedge into 
the starter crack. Clearly greater force is required the further the wedge is inserted and the stiffness is non-
linear, increasing with x, as shown in Figure 1b, but partially elastically reversible on unloading. 
 
 
 

 
 

  



Before any cracking commences, work is done as the wedge is driven in, given by 

xternal work done = ∫Fxdx = [3E I H tanθ(1 − cosθ)/θ] ∫dx / (ao − x)   
                                                      (5) 

sing (4). This work is partly dissipated in friction and also provides stored elastic strain energy in the bent 

he friction force µK moves through dx/cosθ when the wedge advances by dx and the increment of friction 

(friction) = µFxdx / cosθ (sinθ + µcosθ)                                                                                                     (6) 

sing (1). The total work done against friction when the wedge has advanced a distance x is given by 

iction work = ∫µFxdx / cosθ (sinθ + µcosθ) = {3E I H tanθ(1 − cosθ)/θ cosθ (sinθ + µcosθ)}      X  
       (7) 

ubstituting for Fx from (4). 

he difference in magnitude between (5) and (7) is the strain energy Λ stored in the beam which is thus 

 = [3E I H tanθ(1 − cosθ)/θ]      X  
θ)]  [{1/(ao − x)} − {1/(ao)}]                                                            (8) 

cking will commence when R = −(1/w) ∂Λ/∂x⎟u where R is the fracture toughness and w is the 

 = (1/w) [3EIHtanθ(1 − cosθ)/θ] [1 − µ / cosθ (sinθ + µcosθ)] [1 / (ao − x)2]                                              (9) 

hich may be written 

 = (Fx / w)[1 − µ / cosθ (sinθ + µcosθ)]                                                                                                     (10) 

sing (4). That is, cracking/cutting takes place at constant load given by 

x = Rw / [1 − µ / cosθ (sinθ + µcosθ)] = Rw /Qbend                                                                                     (11) 

here  

bend =  [1 − µ / cosθ (sinθ + µcosθ)]                                                                                                          (12) 

nder frictionless conditions Fx = Rw (an expression not involving θ) which is the same as that for the simple 

or given fracture toughness R, Equation (9) gives the length atrans = (ao − xtrans) of the crack at the transition 

t can be 
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cutting of floppy materials which neither store nor dissipate energy. The reason that the strain energy of the 
beam seems to disappear in the above calculations is that in steady cutting, the incremental bending energy 
put in as the crack advances is matched exactly by the increment of bending energy recovered as the beam 
flattens out when the wedge moves forward (ρ is assumed constant), so that it is only external work that 
provides the fracture and friction work. The wedge angle θ appears in (11) since it determines K and hence 
the friction work. The reduced force and energy available for fracture caused by friction is given by the factor 
Qbend.                                                 
 
F
to cutting. Knowing atrans enables ρtrans to be calculated for given wedge angle θ and hence the gap  
 (ao − xtrans) / (1 + cosθ) that exists between the tip of the tool and the crack tip. It is never zero bu
very small. It implies that, once started, a cut could just as well be progressed by a blunt tool (truncated 
wedge) and that sharpness does not matter. Sharpness would only be important at the commencement of 
the cut. However, surface damage at the start of a cut caused by a blunt tool may not be acceptable so tools 
are kept sharp. The allowable truncation of a wedge tip is utrans = [atrans − gap]tanθ = atranssinθ. 
 
 
 

  



3.2 Plastic or other irreversible formation of offcut 

or simplicity, the plastic strains are assumed to be much greater than the elastic strains, and again the 

P = [w σo t /4] [2/(n + 2)] [t/2ρ]                                                                                                               (13) 

he increment of total work done on the element at y is given by  

o(y/ρ) /(n+1)]w dy                                                                                                                                (14) 

nd integration of this gives  

owt / (n+1)(n + 2) (2ρ)                                                                                                                       (15) 

r the total plastic work done on the section. Dividing by wt we obtain the plastic work done per volume in 

 = [σo/ (n+1)(n + 2)] [t/2ρ]n+1                                                                                                                    (16) 

W = − [σo/ (n + 2)] [t/2]n+1[dρ/ρn+2] = + [σo/ (n + 2)] [t/2]n+1 dx / θ[(a/θ) − (t/2)]n+2                                       (17) 

o − x) = [ρ +(t/2)]θ. 

efore cutting occurs, as the wedge/tool is inserted down the starter crack of length ao, the work done Fxdx 

Γ = d(WV) = WdV + VdW = 0 + VdW                                                                                                       (18) 

here V (= awt) is the volume of material being bent. The WdV term is zero because, as x increases dV is 

xdx = VdW + d(friction)                                                                                                                             (19) 

nd using V = ( ao − x)wt with dW from (17) and d(friction) from (6) gives the Fx ∼ x relation for the wedge 

 
F
neutral axis of the arm is assumed to be bent into a circular arc of radius ρ. We assume that the stress (σ) - 
strain (ε) curve of the material is given by σ = σoε

n where σo is constant, so that the bending stress at 
distance y from the neutral axis is σbend = σo(y/ρ)n. An element at y has a moment about the neutral axis and, 
in the usual way [14], integration gives the plastic bending moment MP on a section of the beam as 
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goes to plastic bending and friction, both of which are irreversible.  The increment of plastic bending dΓ is 
given by 
 
d
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negative, which implies a recovery of work. There can be no recovery in plastic bending: there would be if σ 
= σoε

n represented non-linear elasticity and it is situations like this that care has to be taken when thinking 
that Hencky total strain plasticity and non-linear elasticity are identical (see Section 3.3). The dW term is 
positive because, as the wedge advances, ρ decreases and ε increases. Thus before cutting 
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before cutting commences. It is non-linear and irreversible on unloading, Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

 
 
 
 
 
 
 

 
 
 
 

  



At some x, it will be energetically favourable for cutting to occur instead of bending to a smaller radius. Then 

 + Rwda + d(friction) = WdV + Rwda + d(friction)                                                                      (20) 

nd using W from (16) and dV = wtda, with d(friction) from (6), (20) gives the Fx ∼ x relation for the wedge 

he transition to cutting takes place when (19) and (20) are equal, that is when 

dW = WdV + wRdx                                                                                                                                 (21) 

nd the transition is therefore characterised by a radius ρ ans which satisfies 

/2ρ ans)  + [n/(n + 1)] (t/2ρ )  = (n + 2)R / σot     = (n + 2) Z / 2                                                      (22) 

eld criterion. Note that while here, for offcut 

he gap between the tip of the tool and the crack front is obtained as before from the crack length atrans. 

able 1 gives values of (ρtrans/a) for different n and different Z from solution of (22). 

                                                     TABLE 1 

                        (ρtrans/t) 

Z            n=0.5 n=0.3 n=0.1 
         

           n=0 
   

  

     0.51  0
1       0

 
ince ρ is supposed to be much greater than t in the assumptions of engineers’ beam theory, the Table 

he cutting force is given by (20) using (t/2ρ)trans (=P, say) which takes the constant values given in Table 1 

x/Rw = (1/Qbend) { [1/Z (n+1)(n+2)] P + 1}                                                                                              (23) 

hich at first sight implies a linear relation between Fx and t (since (1/Z) = τyt/R) with an intercept of 

x/Rw = (1/Qbend) { (1/2√Z )  + 1}                                                                                                             (24) 

hich gives Fx ∝ √t with an intercept of Rw/ Qbend [2]. Representative Fx vs t behaviour is shown in Figure 3 
and is typical of that found experimentally in veneer peeling, wood planing and so on. 
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during cutting. 
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where Z =(R/τyt) and where  τy = (σo/2) according to the Tresca yi
formation by beam bending, we employ the same symbol Z as in cutting by shear band formation to 
represent the non-dimensional toughness/strength ratio, it may very well be that the two R’s are not the 
same for the different modes. The transition radius of curvature is carried along in steady bending, so fixing 
the bending strain during cutting. The value of Fx for cutting is obtained from (20) by substituting ρtrans from 
(22) in (16).  
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n=0.05
          450.0001   38.9  38.9      38.9           50 

0.001   20.1  20.1 24.1 24.1 15.8
0.01     5.3    6.2   6.3 5.8 5.2 
0.1     1.5    1.6   1.7 1.6 1.6 

1     0.5    0.52 .51 0.5 
0     0.2    0.18     0.17   0.16 .16 

S
shows that transitions to plastic bending occur only at small Z = (R/τyt). Insofar as what will happen at large 
Z, it would appear that the shear mode of offcut formation will supervene when the transition radius is forced 
to levels smaller than the thickness of the beam. Since the mean bending strain is some (t/4ρtrans), we 
observe that ε ∼ 0.01 for small Z and about unity for Z = 1. 
 
T
for given Z. We have 
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Rw/Qbend. However, different t give different Z for fixed τy and R, and therefore different P for every t. For 
bigger t, Z is smaller and P goes down as illustrated in Table 1. This means that the local slope of the plot 
decreases at greater t and so the plot is non-linear. In the case of n = 0, Equation (22) gives (t/2ρtrans)2 = Z, 
so that P = √Z and  
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We also note that in “ [ρ + (t/2)]θ = a ”, if ρ alone is employed from the outset instead of [ρ + (t/2)] in the 
analysis (in the sense of t << ρ for beam theory to apply), we predict a constant cutting force, independent of 

 
plastic bending is obtained if σ = σoε

n 
represents non-linear elasticity which, in turn, is supposed to represent plasticity. The non-linear stiffness of 

iefly reviewed cutting mechanics in general, and then concentrated on the formation of 
ffcuts in bending by small-angle wedge tools. The treatment is similar to that in[2] but the line of attack is 

 the absence of 
iction, would simply be Fx = Rw as already shown in [2].   

oes not assume the same radius of curvature for 
l uncut chip thicknesses (unlike [2]) and solves for the different transition radii at different t. It is predicted 

redicted 
r irreversible bending offcut formation, and the offcuts do display residual curvature, eg [15]. It might have 
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t, for plastic beam bending, given by Fx/Rw = (1 + n)/nQbend .                                                                             
 
3.3 Invalid non-linear elastic solution for plastic beam bending. 

We note that an invalid solution for cutting with offcut formation in 

a cantilever following σ = σoε
n is given in [13] and following the procedures in §3.1, the same result for Fx as 

given by (11) is obtained (the algebra is not given here). It is wrong because it presumes that bending 
energy is recovered from those parts of the arm overtaken by the wedge as it is driven down the starter 
crack. But in plasticity, no energy is recovered on unloading, so more external work has to be done to 
achieve cracking. Had we permitted dV to be negative in (19) instead of zero, we would have obtained (11) 
in place of the solution in §3.2. Also, if we put n = 1 in every step of the solution obtained from the Phillips 
[14] expression, we demonstrate that the transition line of attack employed in §3.2 applies just as well for 
linear beams in §3.1.  
 
4.  Conclusions 
 
The paper has br
o
different, in that the body from which a slice is to be taken already has a starter crack present, and the 
analysis concerns what happens as the wedge cutting tool is driven down the starter crack. The conditions 
for the transition from wedge insertion at constant crack length to steady cutting are solved.  
 
In elastic cases, the cutting force is constant and independent of offcut thickness t which, in
fr
 
In plastic or other irreversible cases, the present analysis d
al
that Fx varies with uncut chip thickness t in a non-linear manner, and that in the particular case of a rigid-
perfectly plastic material where n = 0, Fx varies with the square root of uncut chip thickness (cf. [2]). 
 
Experiments on small samples to mimic veneer peeling show a variation in Fx with t similar to that p
fo
been thought that the reversible elastic analysis would apply. This is being investigated further together with 
quantitative comparison between theory and experiment. 
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