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Abstract 
Surface roughness is known to have great influence on fatigue life. The traditional approach 
is to relate the average roughness to the endurance life through a material parameter such as 
ultimate tensile strength. Such approaches have however shown a large degree of scatter, 
indicating that this approach is insufficient for relating surface topography to fatigue strength. 
This is the motivation for the current research, where surface roughness is modelled by finite 
elements obtained from measured topography. The results can be used directly in fatigue life 
prediction or as a foundation for evaluating and developing prediction methods. An 
aluminium alloy used in a wrought automotive front wheel suspension arm is used for testing 
and evaluation. 

 

Introduction 
Failure from cyclic loading occurs when a fatigue crack has grown large enough so that the 
remaining cross section cannot support the applied load. While the time to initiate a small 
crack of approximately 1 mm length can be determined from surface stress or strain, the 
propagation of larger cracks require assumptions about crack shape and component geometry. 
For small components such as automotive suspension arms, most of the time to failure is 
spent in crack initiation, thus a conservative approach is to denote the component as failed 
when a crack has initiated. Results from elastic finite element analysis (FEA), which is used 
in dynamic simulations, can therefore be used for fatigue life prediction. Surface roughness 
introduces microscopic stress raisers that reduce the crack initiation stage considerably 
compared to smooth specimens. The aim of this research is to quantify this effect by 
measurements, and develop methods for fatigue life prediction of components with rough 
surfaces. 

Fatigue life prediction of rough surfaces has traditionally been considered by means of a 
surface correction factor that reduces the endurance life compared to that of a smooth surface. 
Surface factors are defined according to the machining process such as grinding, forging and 
polishing. Within each category, surface measurements give a quantity such as average 
roughness Ra, maximum peak-to-valley height Ry and 10-point roughness Rz: 
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L is the measured length, z is the recorded profile and i and j denote the highest peaks and 
lowest valleys respectively. A surface factor is found by regression with one of these 
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parameters, which provide an empirical fit to the observed reduction in endurance life. This is 
not a very flexible approach, since a large amount of testing is required to establish the 
relation for different surface finishes, even for a single alloy. Furthermore, the R-parameters 
are not reliable measures of surface roughness since the shape and distribution of pits and 
grooves are not considered. 

The asperities that constitute surface roughness can be treated as microscopic notches by 
introducing a stress concentration factor Kt=σ/σnom, where σ is the stress in the notch root and 
σnom is the nominal stress for the cross section. Neuber [1] proposed an expression for the 
stress concentration factor imposed by roughness as follows: 
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where ρ is the asperity root radius and λ is the ratio between spacing and depth of the 
asperities. The expression then predicts less Kt for closely spaced asperities, but the actual 
value of λ is hard to define for generic surface textures. Arola and Williams [2] therefore 
suggested the following expression for the stress concentration factor: 
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where the dependent parameters as given in Eq. 1 are more easily quantifiable. 

In the current research, Kt is found from linear elastic FEA of the surface topography. In 
addition, stress gradients and principal stresses and strains can be evaluated and compared to 
elastic-plastic FEA. While this may provide valuable insight into the fatigue processes at 
microscopic notches, a fatigue assessment method should be based on a linear elastic solution 
in order to be of general use.  

 

Experimental 
Smooth and rough cylindrical specimens are used for fatigue testing. The material used in 
this study is a 6082.52-T6 aluminium alloy. Test specimens as shown in Figure 1 have been 
extracted from both the extruded billet material and at various locations in the forged 
components. Due to the expected variability in the forged specimens, testing and preliminary 
fatigue life prediction have been performed on the extruded specimens. 
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Figure 1: Test specimen geometry. [mm] 

Fatigue testing 

High cycle fatigue (HCF) testing is done under load control with a load ratio of R=-1 and a 
frequency of 15 to 20 Hz. Low cycle fatigue (LCF) testing is done at strain control with a 
nominal strain rate of 0.4 %/s and a strain ratio of Rε=-1. Figure 2 shows the total strain 
amplitude versus cycles to failure for both HCF and LCF. Also shown is the strain life curve 
where the parameters σ’f, ε’f, b and c are found by least squares regression.  
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Figure 2: The strain life curve and the stress-strain response for the alloy. 

The material's cyclic stress-strain response shown to the right is determined by 
incremental step tests and checked against the half life values of stress and strain in the 
LCF results. 

Surface roughness is created with emery paper of various coarseness. The specimens are 
rotated in a lathe, while an arm and lever with emery paper is pressing against the mid-
section of the specimen. This produces circumferential grooves in a repeatable way, and 
allows the specimens to be modelled by axi-symmetric finite elements. The average 
roughness Ra ranged from 3.3 to 9.3 µm and maximum peak-to-valley height Ry ranged from 
21 to 75 µm. 

 

Surface measurement 

The rough specimens are measured using a white light interferometer (WLI), of the type 
Wyko NT2000. Three-dimensional topography is obtained by moving the objective towards 
the surface where the heights of areas with constructive interference are recorded. The 
resolution is typically 3 nm in the vertical direction and 1 µm in the lateral directions. 
Topography measurements using WLI have shown to be more accurate than stylus 
instruments [3], and it is also a much faster technique, giving 3D topography in a matter of 
seconds. The specimens are placed on a table that can be controlled by a computer to move in 
the two horizontal axes. Large areas can therefore be automatically measured by scanning 
several small areas and stitching them together. The cylindrical specimens are measured 
along the mid-section at four angular positions to capture variations around the 
circumference. Using a sampling interval of 3 µm, about 20 scans are needed to cover the 
length of the mid-section. 

 

Finite element analysis 

The 2D profile is extracted from the 3D measurements by averaging a 300 µm wide band 
along the centre of the measurements. The profile geometry is constructed from the sample 
points by piecewise cubic Bézier interpolation in order to avoid singularities associated with 
corners in a linear interpolation. The surface is defined by 
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where ri is the position vector for the spline segment i between sample points pi and pi+1 as 
shown in Figure 3a. The control points bi and ci are chosen so that spline ri and ri-1 have the 
same gradient ki in pi: 
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The locations for the control points are then found from the sample points and their 
respective gradients: 

11     , ++ −=+= iiiiii kpckpb αα ,   ii pp −= +13
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The factor α determines the distance from the sample points to the control points. Using the 
above value “divides” the spline in approximately three equal parts, which produces the most 
natural guess for the real surface between sample points. In Figure 3b, a solid line shows the 
Bézier interpolation between the WLI samples shown as dots.  
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Figure 3: a) Bézier interpolation between sampled points pi and pi+1 to obtain the spline 

ri. b) Interpolated profile for a specimen where the WLI samples are shown as dots. 

The profiles are stored in a MATLAB database and FE meshing and calculations are done 
in the MATLAB toolbox FEMLAB, whereby the whole procedure from reading WLI data to 
extraction of stress concentration factors can be automated by MATLAB scripts. FEMLAB 
has internal support for Bezier splines, allowing the sample points and control to completely 
describe the geometry. The adaptive meshing routine can then create finer and coarser mesh 
depending on the curvature of the surface profile A unit tensile stress is applied to the cross 
section, which gives the stress concentration factor as the linear elastic solution of axial stress 
in the root of all notches. Axi-symmetric triangular elements with quadratic shape functions 
are used.  

The material is assumed to be isotropic and homogenous. The smallest elements are in fact 
smaller than the grain size of the material, which is around 20 µm as observed in scanning 
electron microscope (EBSD). Hence we are on the boundary of validity for continuum 
mechanics, and microstructure should at some stage be accounted for.  

 

Fatigue life prediction 
The fatigue life prediction follows the strain life approach used for notched geometries. 
Surface asperities are treated as microscopic notches, where elastic stresses and strains are 
converted to local plastic stresses and strains in the notch root. Different methods can be used 
for this conversion, depending on the stress state in the notch root and the applied loading. 
The most well known approach is that due to Neuber [4], which relates nominal elastic values 
to notch root stress and strain as , where C is a constant and εCEK nt == 22εεσ n is nominal 
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elastic strain. Plane stress is assumed in this analysis, which can be shown is not the case for 
a circumferentially notched bar. A method for general stress states is outlined in the 
subsequent section.  

It is well known that Kt gives very conservative results when used in fatigue life prediction 
directly. A fatigue concentration factor has therefore been defined as: 
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where ∆σnom is the nominal stress for the notched specimen failing at Nf cycles, and ∆σ(Nf) is 
the stress range evaluated from the fatigue life curve. Kf is related to Kt by the notch 
sensitivity: 
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This parameter is known to vary with material and notch geometry. Several expressions for 
this dependence have been proposed. They are all semi-empirical equations which try to 
account for the material volume influenced by the notch; a sharp notch will have a steep 
stress gradient into the material, thus the volume of elevated stress will be smaller than for a 
blunt notch. Neuber [1] and Peterson [5] among others have tried to relate q to the notch root 
radius in addition to a material parameter. In a previous work [6], Neuber’s expression for Kf 
was successfully applied for predicting fatigue in the HCF range.  For a random surface 
topography, however, the notch root radius is hard to define. Based on a large amount of 
empirical data, Siebel and Stieler [7] expressed Kt by the relative stress gradient: 
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where, for loading in the z direction using cylindrical coordinates (z,θ,r), the relative stress 
gradient is defined from the axial stress σz as: 
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where the peak stress in the notch root is σnotch. The gradient can be extracted from the FE 
solution where the strain-displacement relations assuming small strains are: 
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where u and w are the radial and axial displacement respectively. The FE discretization uses 
the dependent variables v and w, giving the stress gradient as: 
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Generalized Neuber 

Hoffmann and Seeger [8] extended the Neuber approach for general stress states by using 
equivalent stresses and strains, σ and ε . In their formulation, Neuber's rule is 
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written: EK nt
22εσε = , where tK  is the equivalent stress concentration factor. Using the 

Mises yield criterion, tK  can be written in terms of elastic stress ratios for the principal 
stresses: 
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where superscript e denotes elastic values of stress or strain. Equivalent notch stresses and 
strains can be related to principal notch stresses and strains by using Hencky’s flow rule: 
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where  are the principal plastic strains, and the index i take the values 1,2 and 3. On a free 
surface, σ

p
iε

3=0, and Eq. 14 can be expanded to: 
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where ν is Poisson’s ratio. Two additional equations are needed to solve this system of five 
unknowns. One is found from, the Mises yield criterion: 
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The last equation is found by assuming that the elastic and plastic strain ratios are the same 
for both plastic and elastic solution: 
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The solutions for the first principal stress and strain are: 

φν
νφνεεσσ
'1
'     ,

1
'1     ,

1
1

2121 +
+

=
+−

−
=

+−
= a

aa
a

aa
 (19) 

Results 
A very fine finite element mesh was needed to resolve the stresses and gradients at the notch 
root. The smallest element sizes were around 1 µm, creating a mesh in excess of 1 mill. 
degrees of freedom for each profile. The convergence was satisfactory for both the stress and 
gradient solution, although the latter showed discontinuities for subsurface solutions. The 
reason is that Eq. 12 is based on second derivatives of the dependent parameters, while the 
FE shape functions are quadratic. A small region was analyzed with cubic and quartic shape 
functions, but the gradient solution at the notch root did not change significantly.  

The material parameter c in Eq. 9 was found for each specimen from the observed Kf and 
the calculated Kt for the notch where the fatigue crack initiated. A rather large scatter for c  
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Figure 4: (Left) The material constant c from Eq. 9 vs. observed fatigue life.  

(Right) Notch sensitivity q vs. fatigue life. 

was observed, and as Figure 4 shows, there is a marked dependence on Nf. This is due to the 
commonly observed increasing notch sensitivity with increasing lives as shown in Figure 4. 

Using the median value of c for all specimens, the strain amplitudes have been calculated 
with the Neuber and Hoffmann-Seeger correction for all the grooves where cracks initiated. 
As seen in Figure 5, the surface roughness reduces the fatigue life with a factor of about 10. 
The predicted values seem to have a steeper slope than the reference curve. The Hoffmann-
Seeger correction predicts lower strains due to the higher constraints in the notch roots 
compared to a plane stress solution. The latter solution is therefore better, but cannot predict 
the correct strain outside the Nf region where c was extracted.  
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Figure 5: Comparison of the polished strain-life curve and the predicted strain amplitudes 

using the Neuber and Hoffmann-Seeger (HS)-correction using the median of c. 

Subsurface axial stresses have been extracted for all major notches. In Figure 6 the stress 
ahead of the notch where failure initiated is shown as a bold line for two specimens with 
comparable stress gradients. The c parameter is however very different, as is the shape of the 
stress distribution ahead of the notch. As seen, the initiation site is not at the notch having the 
highest σz at the root , but at the notch that has the highest stress in the region 5-10 µm ahead 
of the notch. This was observed for all specimens, regardless of applied stress and Kt.  
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Figure 6: Axial stress at a distance r ahead of all major notch roots for two specimens. 
The bold lines indicate the stress solution for the notches where the cracks initiated. 

Conclusion 
The use of Kf was originally developed for the fatigue limit, giving the ratio of un-notched to 
notched endurance stresses. Klesnil and Lukáš [9] has linked Kf to the threshold stress 
intensity factor for small cracks using the length of non-propagating cracks, while Navarro et 
al [10] have used the mean half grain size. The latter theory is based on grain boundaries as 
obstacles to crack propagation, where the first boundary is assumed to be located a distance 
equal to half the grain size ahead of the notch. It is interesting to note that in the stress fields 
for the initiation sites (Figure 6), the stresses dominate over the other notches at a distance 
corresponding to half the grain size of about 10 µm. However, applying theories based on 
fatigue limit for the whole fatigue life does not seem appropriate.  
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