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Abstract  
The paper presents a definition of the strain energy density parameter for description of 
fatigue of materials, machine elements and structures subjected to random loading.  In the 
case of multiaxial random loading, a generalised energy criterion based on the energy density 
parameter of normal and shear strains acting in the critical plane was applied. This criterion 
was used for determination of the equivalent strain energy density parameter, reducing the 
multiaxial stress state to the uniaxial one. The paper also contains a review of models for 
determination of non-local stresses and strains under stress gradients in the material. Next, an 
equation for calculation of the non-local equivalent strain energy density parameter in the 
critical plane was proposed. 

 
Introduction 
The main aims of this paper are an approach to stress gradients in circular sections of bars, 
using the energy parameter and its introduction to description of multiaxial fatigue as well as 
elaboration of an efficient algorithm for fatigue strength evaluation under multiaxial service 
loading. The stress gradient occurs in two cases: under bending or torsion of smooth bars or 
any loading of elements with stress concentrators. In all such cases it is difficult to determine 
real stresses and strains on the surface or their distributions in the section. Using simple 
equations, it is possible to determine only nominal stresses on the surface and in the round 
bar section for bending and torsion on the assumption that the stress distributions are linear 
along the radius. The problem becomes more complicated in the case of stress concentrations 
caused by notches presence. If the notches are present, determination of stress and strain 
normal distributions in the bar sections requires numerical methods. In the case of stress 
concentrators, it seems to be right to model non-linear stress and strain distributions with 
simple analytical expressions. In this paper, the authors modelled the pseudoelastic strains 
and stresses for bars with ring notch by pure bending and pure torsion. Next, a method of 
determination of non-local parameter of fatigue damage in the energy approach is proposed.  

 
Energy parameter of damage  
A change of strain energy density has been applied in theory of plasticity for many years. It 
has been proposed as a parameter for fatigue description [1]. The proposed model does not 
include separation of strain energy density into elastic and plastic parts, as in the case of the 
SWT parameter [2]. In order to distinguish tension and compression in a fatigue cycle, the 
following equation for determination of the strain energy density parameter history was 
proposed 
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Eq. (1) expresses positive and negative parameters of strain energy density in a fatigue 
cycle and it is possible to distinguish energy under tension and energy under compression.   

Assuming that W(t) – Eq. (1) – is the fatigue damage parameter, it is possible to rescale the 
standard characteristics of cyclic fatigue )( fa Nσ − for high-cycle fatigue and to obtain a new 
characteristic :  )( fa NW −

12
aa 5.0 −= EσW  .                                                                                                   (2) 

This characteristic can be brought to   

af WmAN log''log −= .                                                                                         (3) 

The proposed generalized energy criterion [3] has the following form:  
(1) Fatigue is caused by the part of strain energy density corresponding to work of the normal 

stress  on the normal strain , i.e.  and work of the shear stress  on 

the shear strain  in direction 

(t)ση (t)εη (t)Wη (t)τηs

(t)εηs s , on the plane with normal η , i.e. ; (t)Wηs
(2) Direction s  on the critical plane agrees with the mean direction where the strain energy 

density is maximum, ; (t)Wηsmax
(3) In the limit state, the material effort is determined by the maximum value of linear 

combination of strain energy density parameters,  and , i.e. (t)Wη (t)Wηs

              Q)}()({max =+ tWtW s
t

ηη κβ                                                                     (4) 

where β, κ and Q – material constants obtained from simple fatigue tests, applied for 
selection of a particular form of the criterion (4).  

If the maximum value of W(t) is greater than Q, then damage leading to material fatigue is 
accumulated. The random process W(t) can be understood as a stochastic process of the 
material fatigue effort. Positions of the vector directions η  and s  are determined with one of 
three procedures proposed in [3]. Here, it is assumed that κ = 1 and Q = , and the critical 

plane with normal, where  - mean direction cosines, 
afW

ηηη n̂,m̂,l̂ k,j,i  - versors of axes in the 

0xyz c kn̂jm̂il̂η ηηη ++= ccoordinate system, is determined by normal stresses, and position 

of the vector kn̂jm̂il̂s sss ++= , where  are the mean direction cosines sss n̂,m̂,l̂ s  in relation 
to the 0xyz axis in this plane, is determined by the direction of the dominating shear stress: 

afs
t

WtWtW =+ )}()({max ηηβ .                                                       (5) 

The following formula for the equivalent parameter of normal strain energy density results  
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where:  
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   When a notch occurs, it is important to know stress distribution in the bar section. This 
distribution is linear only in smooth bars under elastic strains and the stress gradient is 
constant. In a notched bar subjected to bending, normal stress distribution is nonlinear. Weiss 
[4] analysed tension of the notched element and he proposed a simple equation for 
distribution of pseudoelastic stresses, assuming the elastic body model under tension. From 
analyses [5] it appears that the following equations can be applied for modelling of 
distributions of pseudoelastic stresses in the notched bar sections under bending:  

Modelling of local distributions of strains and stresses 

( )xa6Raρ
aρ

R
xkσy)(x,σ

xxo

xo
tbanazz −+

= ,     
( )xa6Raρ

aρ
R
xνkσy)(x,σ

xxo

xo
tbanayy −+

= ,     (11) 

( )⎢
⎣

⎡

−+
=

xa6Raρ
aρ

ν
k

R
xσy)(x,σ

xxo

xotbσ
anaxx ( )xa2Raρ

aρ
ν

k

xxo

xotb ε

−+
−  

( ) ⎥⎥⎦
⎤

−+
−

xa2Raρ
aρ

R
xνk

xxo

xo
tbσ

 (12)

             

According to Agnithorii [6], distributions of the stresses coming from torsion can be 
written as  

r2R2R
rk)r()y,x(

o

o
ttanazyayz −ρ+

ρ
τ=τ=τ                                                              (13) 

where  - nominal stress amplitude, R – maximum bar radius, anσ 22 yxr +=  - distance from 

the specimen axis, - radius in the notch bottom, oρ 22
x yRa −=  is the maximum range of 

changes x under the given y,  - stress coefficient of the notch action under bending,  
- strain coefficient of the notch action under bending,  - theoretical coefficient of the notch 
action under torsion.  

tbσk tbεk

ttk

Having distributions of pseudoelastic normal stresses ( )yx,σazz  and shear stresses 
, we can determine distributions of pseudoelastic strain energy densities  ( yx,τazϕ )

- under bending     
2E

y)(x,σy)(x,W
2

azze
a =  ,                                                                      (14) 

- under torsion,      
4G

y)(x,τ
d

4G
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ϕϕ +=  ,                                                   (15) 

when  the fatigue fracture plane is perpendicular to the bar axis ( )0α̂η = , d=0 and when the 
fatigue fracture plane is inclined at π/4α̂η = , d=1 and there is a relation between 

circumferential stresses in the polar and rectangular coordinates .  2
azx

2
azy

2
az τττ +=ϕ

 
Determination of non-local strain energy densities in the critical plane  
The first non-local theories were applied for description of linearly elastic heterogeneous 
materials and for solving problems of crack mechanics where high stress gradients were 
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observed near sharp cracks. Theories of non-local elasticity allows for removal of high 
stresses and to obtain regular finite stress in the all area.  Borino et al. [7] presented the non-
local theory of symmetric damages, describing a change of non-local damage d . They 
expressed the weight function W(x,y) using the delta function δ(x,y).     

The stress gradient occurs under bending, torsion and any loading of notched elements. 
From comparison of fatigue lives under tension-compression and alternating bending [8] it 
appears that the material can be loaded by a greater amplitude under bending in comparison 
with tension-compression. Under tension, damages are accumulated in all the material 
volume, and under bending they are accumulated mainly in external layers of the material 
volume. Thus, a special attention should be paid to non-local approach to fatigue life 
determination, especially when the stress gradients occur. Such approach has been used for a 
long time by determination of non-local stresses σ  and strains ε .  

Saouridis and Mazars [9] were engaged in determination of the non-local strains. They 
paid attention to necessity of non-local approach to crack mechanics in the volume where 
stress and strain gradients occurred. The authors proposed to determine the matrix of non-
local strains SMε using matrices of local strains  in a certain sphere volume V with a 
diameter 2L. Stabler and Baker [10] proposed a mathematical model applied for damage 
mechanics description, being an extended version of the Mazars  non-local model where the 
damage development was analysed with use of definition of the damage surface.   

ε~

McDowell [11] used the non-local strain (y)εMD in the point, averaged in volume Vo on 
the basis of local strain distribution at the distance Z from the chosen point at the axis y. Also 
Borst et al. [12] proposed a damage model using the non-local equivalent strain. Belytschko 
and Lasry [13] used non-local strain for analysis of weakening materials around the chosen 
point. Also Simone et al. [14] applied the non-local equivalent strain in crack mechanics. 
They determined the non-local equivalent strain in the crack tip and at a certain distance from 
it. As Peerlings et al. [15], they showed that non-local equivalent strain ~  had the finite 
maximum value 

ε
0ε~  in the crack tip. According to the non-local elasticity model proposed by 

Eringen  et al.  [16], the stress field value in the crack tip is finite and similar as in  the model 
of non-local damages considered by Simone. In this case, the maximum occurs at the same 
distance  from the crack tip along the cracking line.  Droz and Bazant [17] applied the non-
local vector of derivatives after plastic strains for evaluation of damage propagation. 

In order to determine stresses and electric fields near the crack tip for piezoelectric 
materials, Zhou et al. [18] developed theory of electroelastic crack mechanics and non-local 
theory used for modelling and analysis of cracks in such materials. This theory enabled to 
eliminate difficulties at determination of stresses and displacements near crack tips.  

Under complex stress state, Neuber [19] proposed to determine non-local stress at the 
point yo using the equivalent stress σv by its averaging at a certain length ρ*, which depends 
on the material and the yield point. Dyskin [20] determined  non-local microscopic plastic 
stresses in the cracking zone from a certain length d, along which plasticity occurred. Dorgan 
and Voyiadjis [21] tested application of non-local theory for description of non-local damage 
behaviour and plastic hardening. They proposed the equation expressing non-local plasticity 
as the function of potential plasticity. The occurring gradients allow for finding non-local 
behaviour of the materials and understand collective behaviour of defects, e.g. displacements. 
The applied non-local theory assumes that in the point x, non-local value   A  being a 
variable of the internal local state A, is expressed as the weight function in volume V at a 
small distance from x. Taylor [22] proposed to determine the non-local stress range at the 
crack length „a” from the local stress ranges. Seweryn and Mróz [23] determined the non-
local normal and shear stress in the plane of a characteristic dimension  do connected with the 
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critical value of the stress intensity factor according to I KIC. Qilafku [24] used the non-local 
equivalent stress and joined it with the stress gradient. Finally, the authors proposed to 
determine the non-local normal stress at a certain length  xeff  The obtained non-local stress 
can be applied for determination of the fatigue notch coefficient  Kf. Sonsino et al. [25] 
introduced the normalized coefficient of the stress gradient, connected with the radius in the 
notch bottom  ρo at transition from the less diameter (d) the greater one (D). The strain 
reaching 90% of the maximum value on the surface is the calculation strain. Its value is 
determined at a distance from the surface.  Another approach to stress gradient usability was 
presented by Papadopoulos and Panoskaltsis [26]. They introduced a coefficient dependent 
on the stress gradients in three directions to their multiaxial fatigue criterion based on the 
maximum amplitude of shear stress maxτ  and the maximum hydrostatic pressure maxp . Bomas 
et al. [27] used the integral from stress at a certain volume V. According to the ors, the 
notch effect is a particular case of the dimension scale effect. Morel ad Palin-Luc [28] 
proposed to average the local normal and shear stresses in a certain volume in the case of 
determination of fatigue life under the complex stress state for a high cycle regime. Filippini 
[29] determined the stress gradient coefficients χ for different loading cases and element 
shapes. Qylafku et al. [30] averaged the stress in a certain volume in a chosen plane or at a 
certain length. Next, the authors use this non-local stress for determination of the notch 
effect. Sonsino et al. [31] averaged the stress at a certain length in order to determine a 
fictious radius in the notch bottom, enabling determination of the notch coefficient based on 
the theoretical notch coefficient.  

Lemaitre and Chaboche [32] a

 auth

s  that density of the released energy in the material 
wa

sumed
s the sum of the elastic and plastic parts,  ψe(εe, d ) and ψp( d,r ), where εe was the elastic 

strain, d  - non-local damage, and r  - non-local equivalent pla  strain.   Vree et al.  [33] 
applied two different non-local models for analysis of defect behaviour in structures made of 
brittle materials. The authors considered the above models in order to use them for crack 
simulation and their location.   

Palin-Luc and Lasserre [34

stic

] proposed a criterion based on the strain specific energy 
av

ssian 
fun

s that in literature we can meet non-local stresses 

eraged at a cycle T and along the material volume  *V  in the case of the stress gradient 
occurrence. The main source of non-locality in crack m hanics is interaction between the 
adjacent microcracks. Using the theory based on the system of microcrack interaction, 
Pijaudier-Cabot and Bazant [35] considered the model of non-local damages. The calculation 
argument for idea of non-local damages is necessity of reduction of damage location to areas 
with non-zero volume. The authors applied (like Saanouni et al. [36]), a non-local damage 
using crack energy for an area unit fG  and energy dissipated in the elementary volume sW . 

Different authors proposed different weight functions: linear,  in form of the Gau

ec

ction, modified Gaussian functions, Dirac etc. Averaging is performed at the interval or in 
the plane or in a certain volume.  

From the above review it result σ , strains 
ε , damage functions D , and sometimes their derivatives. We can expect that the non-local 

ethods  can be efficie tly used also in the case of the strain energy density parameter in the 
critical plane. Since the fatigue cracking occurs on a certain area, introduction of the non-
local strain energy strain energy parameter 

m n

W  in the critical plane seems to be possible.  

∫=
(t)S

eq
f

eq

f
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(t)S

1(t)W  ,                                                                          (16) 
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The integration area Sf(x,y,t) is this part of the area S(x,y) of the critical plane where the 
following inequality is valid mineq )( W . x,y,tW ≥

meter  Weq(t) are e vel Wmin or greater.  
The area Sf(x,y,t) includes all the points of the area S(x,y), in which moduli of history of 

the strain energy density para qual to the le

The minimum strain energy density parameter is defined as ( )
E

σW
2
*af

min = , where 
2

 is the limit stress below which  - as it is assumed – fatigue damages do not 

The coefficient c is depe
results obtai

n moment can be expressed as  

afaf* cσσ =
accumulate and which can be related to the fatigue limit.  

ndent on the material and it can be determined from the fatigue test 
ned under constant-amplitude tension – compression.  

The non-local strain energy density parameter in a give

⎪
⎪
⎪
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where  is the maximum value of the strain energy density parameter in the 
considered section.  
 

usions 
to the stress gradients in circular sections of smooth and notched bars 

was presented. The considered bars were subjected to combined tension with torsion and 
roach uses the non-local equivalent strain energy density parameter in the 

2. 

nder random loading with zero expected values we obtain the 

3. 

bending and torsion, which 
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under random loading.  
The equivalent strain energy density parameter in the critical plane superposes the normal 
strain energy from bending and the shear strain energy from torsion and includes signs of 
strain and stresses, so u
centred stochastic process, histories of which can be schematised by the widely known 
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sufficiently approximate the calculation results obtained with the finite element method 
on the assumption of perfect elasticity of the material.  
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