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Abstract

Different methods to estimate the instantaneous crack length and the crack resistance curve,
respectively, from a single specimen fracture test are discussed. The Node-Release-Technique
and a ductile damage model were used to simulate ductile crack growth in C(T) specimens
under plane strain conditions. Three hypothetical materials have been considered, where the
parameters related to material model and crack growth simulation technique were chosen in
order to obtain three similar load versus displacement responses. It is shown that similar
load displacement results may correspond to different crack growth behaviour and the capa-
bility of different methods to estimate the instantaneous crack length to distinguish between
these different cases is discussed. The resistance curves predicted by the different estimation
schemes are compared with the corresponding results of the numerical simulations.

Introduction

The ASTM standard E 1820 [1] proposes a method based on the work of Rice [2] and Ernst
et al. [3] to estimate crack resistance curves from the load displacement response of a frac-
ture test. To apply this method, the instantaneous crack length as a function of the load line
displacement has to be known. A methodology to deduce the instantaneous crack length
directly from the load displacement record of a single specimen test was first proposed by
Joyce et al. [4] and has been applied recently to dynamic fracture tests by Joyce et al. [5].
On the other hand, a so-called normalization method was proposed by Landes and Herrera
[6] and further extended and applied for example by Landes and Herrera [7] and many oth-
ers. Based on the Common Format Equation (CFE) developed by Donoso and Landes [8],
a method to estimate crack resistance curves from the load displacement response was pro-
posed by Donoso et al. [9], where an approximation for the crack advance as function of
the load line displacement was incorporated into the CFE. This finally lead to an analytic
estimation for the crack resistance curve.
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The aim of the work presented here is to discuss different methods to estimate the in-
stantaneous crack length and the resistance curve, respectively, by means of numerical ex-
periments. All of the considered methods can be written by the use of a load separation
approach, where the Common Format Equation is used here.

Brief review of the Common Format Equation (CFE)

The total displacement of the load - displacement record of the fracture test is splitted into
its elastic and its plastic part
v = v+ o (2)

and the relation between load and plastic displacement is written as a product of three terms

P=Q'GH. (2)
with
b m
G = CBW [W] : (3)

whereb is the ligament size, given approximately by the difference between the in-plane
geometry parametéf” and the crack length (b = W —a) andB is the specimen thickness.
The constantg’ andm have to be determined for the considered specimen geometry. In
Donoso and Landes [10]; = 1.553 andm = 2.236 were obtained for the C(T) specimen.
The functionH in (2) is related to the hardening behaviour of the materiak&hdHere, it is
assumed that the stress-plastic strain relationship ) can be approximated by a power
law and therefordd is set to

E

Oy,

1/n
H = oYy < ) ’UN% with UN = Upl/W (4)

whereF is the elasticity modulusry, the yield stress andanda are constants used to fit the
experimental data. Finally, the factQr in equation (2) is interpreted as a constraint factor.
For plane strain{2* = 0.38 was found elsewhere. The counterpart of (2) with respect to
the relationship between load and elastic diplacement provides an estimation for the elastic
compliance of a blunt notched specimen in plane strain

A=) (b7
c=—F5— (w) ®)

whereA = 7.60 andu = 2.28 were found for the C(T) specimen in [10].

Brief review of the considered estimation methods

Compliance ratio methodology (CRM)

The approach proposed by Joyce et al. [4] takes advantage of the fact that the elastic compli-
ance of a fracture specimen decreases with increasing crack length. The actual compliance
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FIGURE 1. P-v response for the different materials and finite element migsh (.2mm).

is deduced by comparison with the load displacement record which corresponds to a blunt
notched specimen without crack growth but with identical inicial ligament lehgthThe
concept makes use of (1) and the instantaneous crack length is estimated from the compli-
ance ratio assuming that after the onset of crack growth, the changecaih be neglected.
Using (1), the actual load line displacementan be written as

_ Pl _ .l
U = Vg, + PonCon = vE; + Pegleg (6)

where the subscript$n’ and 'cg’ are used to distinguish between the quantities which corre-
spond to the blunt notched specimen and the fracture specimen, respectively. The compliance
of the blunt notched specimen,() can be approximated by means of (5) as follows

. A(l - 1/2) bo o
O T (w 0
and the compliance of the specimen with growing crack is written similarly
Al —=vy) (b \ 7"
“="pp (w) ®)

using the instantaneous ligament len@thstead of the initial ligament lengtly. According
to the assumptions mentioned abon{é,andvg’; are approximately equal and it follows from
(6) that the instantaneous ligament length is given by

b o (P} ©)
w-wi\e,)

Onceb/WV is known, the ASTM scheme can be applied to calculate the resistance curve.
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FIGURE 2. Comparision of the results for the material Ml

Normalization using the CFE (NCFE)

Similar to (2), the load is written as a product of a deformation funcfiowhich depends
on the normalized plastic displacement and the terms which are related exclusively to the
geometry of the specimen

P =Q*GH(vy). (10)

For a blunt notched specimen, the calibration functiorepends on the initial ligament
length b, whereas in the case of crack growthdepends on the instantaneous ligament
length. The normalized loaly is defined as

Py =P/G. (11)
It follows from (10) and (11) that )
PN = H(UN) (12)
and a functional form has to be chosen féfvy ). Here, the power law approximation
H(vy) = cust (13)

is used, where, andc; are related by the fact that one point of the normalized load versus
displacement curve can be determined using the final crack length and the functional form
has to coincide with this point. Furthermore, assuming that initiation of crack growth starts
atvy > 0, Py has to coincide at least for very smalf with the stationary crack response.

It follows from (13), (10) and (3) that once the exponenis known, the instantaneous crack
length is given by

b

m —c1 1/m
P bf UN
w1 () () ] | o

whereb; is the final ligament length ankl; andvy, are the corresponding load and normal-
ized plastic displacement, respectively.
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FIGURE 3. Comparision of the results for the material Mll

Closed form of the resistance curve based on the CFE (CCFE)

The methodology proposed by Donoso et al. [9] applies a power law fit to approximate the
instantaneous ligament length as a function of the load line displacement as follows

b bo Aay [vn h
b b 15
wowo W (Wf) (15)

whereAa; denotes the total crack advance. The approximation (15) is incorporated into the
CFE (2). The parametéy is determined in order to obtain coincidence between the load
versus displacement record predicted by the CFE and the corresponding fracture test data.
Finally, the 7 integral was obtained in Donoso et al. [9] for plane strain as follows

m—1
K? , n [b\" Aay oy \" -
=-L1- Qo *CW — 1——[— " (16
J (1—v7)4+mQc"C n+1< b \ox, Uy (16)

where the elastic component gfis expressed by means of the mode-I stress intensity factor
K; which can be determined using estimations given in [1] or other methods.

Numerical simulation of ductile crack growth

Here, the node-release technique and the continuum damage model proposed by Gurson [11]
and further modified and extended by Tvergaard [12], Tvergaard and Needleman [13] were
employed. The ABAQUS node-release facility Hibbit et al. [14] requieres that the instanta-
neous crack length has to be given in a discrete form as a function the load line displacement
and according to these data, the progam releases the corresponding nodes during the calcu-
lation. In the following, the index notation in conjunction with the summation convention is
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TABLE 1. Different hyphotetical materials considered here

Material | Simulation | parameters related to crack growth
technique
Mi node-release Aa = c1v
fo fe |IN |sN |en | @ @ | K | le [mm]
Mill GTN 1076 03]/10°]0.1/05|1.75|1.0|3.0625| 4 | 0.1
Mill GTN 210°[0.2]/0.01|01][05|15 |1.0]|2.25 410.2

used to outline the essentials of the GTN model which consists of the yield condition

PIY
- (35 (g§> b2 Cost (g ) S -l an)
and evolution equations for the internal variables. Theand>:}; in (17) are the components

of the Cauchy stress and its deviatoric part, respectivelyoaitd) stands for an averaged
stress versus plastic strain curve of the matrix material. The fit paranyetessqgs in (17)

have been proposed in [12] in order to get a better agreement between the predictions of
the original model and the results obtained by cell model calculations. To take into account
the loss of stress carrying capacity associated with void coalescence, the modified damage
parameter* was proposed in [13] as a piecewise linear function of the void volume fraction

f

. _ S f<fe _fo—fe
f N {fc_{"%(f_fc) f>fc Wlth H—fF_fc'

The parametef}; is related tay; by f; = 1/q; if g3 = ¢? is used. The void volume fraction
where void coalescence starts is indicated bgnd the void volume fraction at final fracture
is denoted byfr. The change in void volume fraction is given by

. . 1 g — EN 2 .
f=— B+ Emp( [ Dg , (18)
( ) kk N\/_ SN
where the the plastic strain rates are terme@@&ande]v, sy and fy are material parame-
ters. Finally, the evolution equation for the equivalent plastic strasrgiven by

E=SyEL/(1 - f)/ov(e). (19)

The GTN model suffers from a spurious mesh dependence of the numerical results after the
onset of localization of deformation. An engineering approach to handle this problem is
based on the idea to interprete the dimension of the finite elements within the localization
zonel, as an additional parameter.

Three hypothetical materials (MI, MIl, MIl) are considered. The elasticity modBlus
200GPa, the Poisson ratio= 0.3 and the yield stressy, = 235MPa have been chosen. It
is assumed that the hardening behaviour can be characterized by a power lan=witand
n = 6. All three materials have identical characteristics in terms of elasticity constants and
stress versus plastic strain curve but different micromechanical properties as shown in Table
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FIGURE 4. Comparision of the results for the material MilI

1.First the parameters for the material MI were chosen and the load displacement response
was determined numerically by means of the node-release technique. Two different values
[, have been used for the materials MIl and MIll and the other parameters given in Table 1
were determined in order to get approximately coincidence with the load displacement curve
obtained for material Ml as shown in Figure 1. All numerical experiments were carried
out considering C(T) specimens in plane strain with= 50mm anda,/W = 0.622. An
example for the finite element meshes can be found in Figure 1. Eight-node and four-node
plane strain elements were used for material Ml and for the materials Mll, Mlll, respectively.

Results and discussion

The results in terms ala(v) and 7 (Aa) obtained by the different estimation methods are
shown together with the corresponding numerical results in the Figures 2, 3 and 4, respec-
tively. The crack resistance curve for the CCFE-method has been calculated by the use of
(16). The ASTM scheme was employed for the other estimation methods. Due to the na-
ture of the power law approximation (13), spurious numerical valhesvere obtained for

very smallv in the case of the NCFE method. Not only these spurious results but also the
negative values obtained forapproximately less then 2.5 - 3mm were set to zero because
in this case it cannot be decided objectively which of these negative values are valid or not.
However, the finite element results show that due to the measuremeéwt by means of

W — b, negative values foAa before iniciation of crack growth are not unreasonable. The
numerical results obtained fdxa(v) are estimated quite well by the NCFE method and the
CCFE method for all three materiales. However, both methods underestimafg te
response. Due the tendency to underestimate the crack resistance, conservative results were
obtained for all three materials by these methods (NCFE, CCFE), where the use of the CRM
method results in a non-conservative estimation for the material MI. As it was forced by
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the choice of the material parameters given in Table I, almost no difference can be observed
with respect to the final loads but the values obtained for final crack length differ signifi-
cantly. Because the CRM deduces the instantaneous crack length exclusively from the load
displacement response, it can not distinguish between these three cases considered here and
provides almost identical values for all three materials. On the other hand, because of the
difference betweet/ (13) andH (4) the NCFE shows inconsistencies in the argumentation.
Because the CCFE method can be interpreted as an inverse normalization it suffers as well
from this inconsistencies.
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