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Abstract 
The present article is an extension of the authors' earlier publications, e.g. Pustaić and Štok 
[1-3], in which Dugdale strip yield zone model was used for modeling some elastic-plastic 
fracture mechanics parameters. In those investigations the authors had kept the assumption 
about constant cohesive stresses within the yield zone and the assumption about elastic-
perfectly plastic model of a material as well. In this paper we wish to define a model, which 
will be closer to the real elastic-plastic state of a material within a yield zone. An assumption 
of variable cohesive stresses within a yield zone is introduced. In this way we would like to 
get a model for describing plastic yielding around a crack tip in a strain-hardening material. 
On the base of the Dugdale strip yield model for the strain-hardening materials the formulae 
for calculating the magnitude of a plastic zone and the crack tip opening displacement 
(CTOD) were derived. The calculation was performed for several different values of strain 
hardening exponent n and two different Ramberg-Osgood coefficients α . 

 

Introduction 
A thin infinite center cracked plate (CCT) with an embedded straight crack of the length 2a is 
considered. The plate is loaded by a monotonically increasing tensile stress  in a 
direction perpendicular to the crack plane, Fig. 1. The plate is in the state of plane stress 
determined by the components 

∞
∞ =σσ yy

( ),, yxxxσ ( )yxyy ,σ  and ( )yxxy ,σ of the stress tensor. It is 
assumed that the plate is made of a ductile material, therefore the plastic zones around crack 
tips are occured. Our aim is to investigate the magnitude  of plastic zones, as well as the 
magnitude of the crack tip opening displacement 
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tδ (CTOD) in a plate made of strain 
hardening material. One of the first models by which it was possible to determine these 
parameters was the Dugdale strip yield zone model, Dugdale [4]. Although it simplified the 
real physical picture of occurrences around a crack tip, it was very successfully applied for 
solving many engineering problems of elastic-plastic fracture mechanics. This model 
describes a yield zone as a narrow strip band, extending ahead from the crack tip and lying in 
the direction of a crack plane. Accordingly, he postulated the existence of an imaginary 
elastic crack composed of a physical blunt crack of length 2a and a supplementary cracked 
zone extended ahead at both tips of the virgin sharp crack for a distance , the length of the 
supplementary crack being equal to the length of the plastic zone around the crack tip, Fig. 1. 
The elastic response due to the external loading is superposed by the elastic response due to 
the application of the cohesive stresses. Because of the assumed elastic approach both 
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responses are characterized by the stress singularity, their intensities being given by the stress 
intensity factors (SIF)  and , respectively. But, since in reality the stress singularity, 
introduced by the elastic approach, does not occur due to plastic yielding it has to be 
cancelled by imposing  

extK cohK

( ) ( ) ( ) 0pcohpextp =+++=+ raKraKraK  . (1) 

The original Dugdale strip yield zone model was implied the application of the Tresca yield 
criterion and an elastic-perfectly plastic material model of a plate. It assumed constant 
cohesive stresses in the whole yielding zone whose magnitude is equal to the tensile yield 
stress of a material, i. e. 0Y σσ = . 

In the present paper we wish to define a new micro mechanical model, which will better 
describe the real elastic-plastic state of a material within a yield zone. If we wish to describe a 
strain-hardening effect of a material we must introduce an assumption about variable 
cohesive stresses within a yield zone. There are several papers discussing the application of 
the Dugdale model by strain-hardening materials, for example Hoffman and Seeger [5], Chen 
et al. [6], Neimitz [7] and so on. Hoffman and Seeger defined the cohesive stress distribution 
on the plastic zone as a function of the plastic zone length , taking into account the strain 
hardening exponent n of a material. The cohesive stress distribution should be clearly and 
reliably defined if we wish to obtain an accurate CTOD value. Hoffman and Seeger pointed 
out in their article that: "even if the exact stress distribution is taken as , the calculated 
CTOD still has large discrepancies from the expected CTOD". Chen at al. [6] suggest that we 
could use the relation between J-integral and CTOD ( J / CTOD = const.) as a judgment 
about reliability of assumed cohesive stress distribution. 
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Stresses and displacements in the direction of the crack plane 
Considering the fact that due to symmetry the shear stress vanishes when , the 
governing equations in the theory of a complex variable 

0Im =z
( )yxz i+=  of the mathematical 

theory of elasticity, Muskhelishvili [8], can be expressed in terms of one single Westergaard 
function , as derived by Sih [9] ( )zZ

( ) ( )zZzZyyxx +=+σσ  

( ) ( )zZzzAxyxxyy '2i2 −−=+− σσσ                                                           (2) 

( ) ( ) ( ) ( ) ( ) zAzZzzzzZzzZvu −⎥⎦
⎤
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⎡ −−−
+
−

=+ ∫ ∫ dd
1
3
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1i2

ν
νµ , 

where A is a real constant, µ  is the shear modulus and ν  is Poisson's ratio. On the x-axis, the 
condition 0=− zz  is fulfilled, so from second equation in the system (2) we get  

( ) ( ) Axx xxyy 20,0, =−σσ .                                                                                 (3) 

Normal stresses ( 0,xxx )σ  and ( 0,xyy )σ  will be at the same time principal stresses. It follows 
from eq. (3) that difference between principal stresses of the axis x will be constant and equal 
to the double value of the real constant A. Its magnitude can be determined from boundary 
conditions in infinity and in present example according to Fig. 1 it amounts 

22 ∞
∞ == σσ yyA , where 0>∞σ . 
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FIGURE 1. 
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strain pε , and at a particular level of external loading. The equivalent stress σ , in the range 
of strain hardening, will always be equal to the current yield stress of the material Ycσ , 
where 0Yc Yσσ > . It means that the magnitude of the cohesive stresses in the yielded zone will 
change in dependence on the level of equivalent plastic strain pε , i.e. 

( ) ( ) ( ) ( )YcpY 0,0, σεσσ fFxxyy === . The equivalent plastic strain pε  must be a function of the 
elastic-plastic fracture mechanics parameters such as, the crack tip opening displacement 

tδ (CTOD) and the length of the plastic zone , i.e. pr ( )ptp , rf δε = . The similar assumptions 
were introduced in the papers of Chen at al. [6], Neimitz [7], Wnuk and Legat [10].  

In the paper [6], the authors took same cohesive stress distribution on the plastic zone 
 as it was defined in the paper [5], namely ( )xp

( )
( )1/1

p
0

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
n

ax
r

xp σ . (7) 

They adopted this expression in their paper in order to calculate the elastic-plastic fracture 
mechanics parameters  and pr tδ  in an infinite center cracked plate subjected to a remote 
tension (CCT). But, they didn't answer the question, how are the obtained results accurate? Is 
the expression (7) founded on the experimental observations? In his paper [11], the author 
shown that within the strip yield zone the cohesive stress ( )0,xyyσ  rises considerably above 
the initial yield stress 0σ  due to the geometrical constraints only. The author modified the 
Dugdale strip yield model in order to include the work hardening properties of a material. He 
adopted the constitutive equation and proposed the distribution of the elastic-plastic strains 
within the cohesive zone in the form 

( ) ( )
t

0,
δ
δϕε xxyy = , (8) 

where ( )xδ  defines the opening of the crack faces within the strip yield zone and ϕ  is a 
scaling factor which was defined in the paper [7]. The magnitude of the parameter ( )xδ  
could be taken as suggested in the same article, namely as 

( )
0/4

p
t 1

σσ

δδ
∞

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

r
axx . (9) 

In the paper [7] author suggests the general formula to compute the cohesive stress within the 
strip yield zone SYZσ . Wnuk and Legat [10] submitted a two-parameter nonlinear function for 
representing the cohesive stress distribution within the cohesive zone. This function is 
assumed in the form (the designations are adopted those in the present paper) 

⎥
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yy ασασ ,           or (10) 

([ λαλσαλσ −⋅= 1exp),,( 0
n

yy n )] ,               ( ) prax −=λ . (11) 

The parameters α and n are the cohesive zone parameters or the state variables. Similar result 
for cohesive stress distribution was obtained in the Guo's paper [12]. 
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Magnitude of cohesive zone around the crack tip 
Non-linear variation of cohesive stress in the yielded zone 
In this section we shall repeat and critically discuss some results concerning on the Dugdale 
strip yield model for strain hardening materials, as they have been given in the article [6]. The 
cohesive stress distribution within the plastic zone is given by expression (7). The stress 
intensity factor, the length of the plastic zone rp and the crack tip opening displacement δ t , 
for a center cracked plate (CCT) according to Fig. 1, could be obtained by means of a Green 
function (weight function) method. The Green function for an elastic center crack in an 
infinite plate subjected to a remote tension is given by the expression 

( ) ( ) 2122

π
2,

−
−= xbbbxm . (12) 

The stress intensity factor (SIF) can be expressed by means of a weight function (12) as 

( ) ( ) ( )∫ ⋅=
b

a

xbxmxpbK d ,coh . (13) 

If we introduce a new variable ξ, so it is ξξ pp )1( rbrax −=−+=  ( ξ = 1 at the point B, and    
ξ = 0 at the point A), we can transform the expression (7) and write him in the following form 

( ) ( ) ( )11
0 1 +−−= np ξσξ .  (14) 

After inserting the expressions (12) and (14) in the formula (13) we get 
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At this point we could introduce an assumption about small crack tip plastic zone. Under 
small scale yielding (SSY) condition it could be taken 02p ≈br . After carrying out 
integration, the final result for Kcoh (b) will be 
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Γ

ΓΓ
σ , (16) 

where Γ (x) stands for the gamma function or the Euler's integral of second type and B (x, y) 
is the beta function or the Euler's integral of first type. This result we have to put in eq. (1) 
with opposite sign because the stress intensity factor Kcoh(b) takes the negative value if it 
calculates for a real direction of the cohesive tensile stresses. 

Finally, we get the plastic zone length rp in front of the crack tip, normalized to the initial 
crack length a as 
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The SIF, corresponding to a remote tension of a plate with an imaginary crack of length b, 
amounts to ( )ppext π)( raraK +=+ ∞σ . 

Now we wish to obtain the plastic zone length rp in front of the crack tip in a special case 
of elastic – perfectly plastic material, n → ∞. Namely, the closed form solution for Kcoh(b) 
can be obtained in a case if  n = ∞ . It follows from eq. (15) 

( ) ∫
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0 p
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2
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π
2
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ξσ

b
r

rbK  . (18) 

After integration, the final result for Kcoh(b) yields 

( )
ba

rbbK
+

⋅−= p
0coh arctan

π
4 σ  . (19) 

By inserting this solution, together with the expression bbK π)(ext ∞=σ , in the eq. (1) and 
after some rearrangements it is obtained 

0

p

4
πarctan
σ
σ ∞=

+ ba
r

 ,  (20) 

or if we do some trigonometric transformations, we shall get the famous expression for the 
length of the plastic zone in front of the crack tip, according to the original Dugdale model 
for elastic-perfectly plastic material of a plate, i.e. 

1
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πsec
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σ
σ
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 . (21) 

 

Linear distribution of cohesive stress in the yielded zone – special case 
The magnitude of plastic zone rp around the crack tip is determined under the assumption of 
linear distribution of cohesive stress σY(x) in the yielded zone, as shown in Fig. 2. The 
equation of the straight line on a part of equivalent elastic crack, through points B: x = a, σ Y.B 
= σ Y1 and  A : x = b = a + rp , σ Y.A = σ Y0 , is expressed as  

)()( Y01Y
1YY ax

ab
x −

−
−

−=
σσ

σσ  .  (22) 

The stress intensity factor Kext in a point A of a fictitious elastic crack, which corresponds to 
the external loading of the plate, according to Fig.1, is expressed as bK πext ⋅= ∞σ .The 
stress intensity factor Kcoh which corresponds to the linear distribution of cohesive stresses    
σ Y(x) within the yielded zone a ≤ | x | ≤ b, is determined by integration. As a matter of fact, 
we imagine that a concentrated tensile cohesive force xxF d)(Yσ−=  is acting on an 
infinitesimally small part of the cohesive zone. When we introduce expression (22) for σ Y(x), 
Kcoh can be written as 
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After carrying out integration, we get 
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Since the cohesive stress σyy(x) = σ Y(x) in the tip of equivalent elastic crack, point A, should 
not be singular, but must have definite magnitude, it means that the resulting stress intensity 
factor K in this point must be equal to zero, as it is defined with the expression (1). Finally, 
we get a transcendent equation from which we can determine, numerically, the length of the 
fictitious elastic crack b. This equation is written in the following form 
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b
a σσσσσ . (25) 

Using numerical methods, we can calculate the ratio a/b from equation (25), and from this 
ratio we can get the length of equivalent elastic crack b. Since b = a + rp, hence follows the 
length of the plastic zone rp around the crack tip. 

 

Determination of crack tip opening displacement (CTOD) in a strain-
hardening material 
The crack opening displacement )(D xδ  (COD) in the Dugdale model is defined as 

)()()( cohextD xxx δδδ −=  . (26) 

Using the weight function method, as it was discussed in the paper [6], the crack tip opening 
displacement caused by uniformly distributed remote loading σ∞ amounts to 

22
ext 4)( ab

E
a −= ∞σδ  , (27) 

while the crack opening displacement caused by cohesive stresses, distributed according to 
the expression (7), and under the small scale yielding condition will be 
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By inserting x = a and s = 1 ( x = b – rp s ) we shall get the crack tip opening displacement 
δcoh (a) in the form 
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If the plate material is elastic-perfectly plastic ( n = ∞ ), the crack tip opening displacement, 
caused by cohesive stresses, will be 
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This expression, together with the expression (27), gives the famous formula for CTOD, 
based on the Dugdale model, for an elastic – perfectly plastic material 
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Conclusion 
In this paper, we have tried to form a more reliable micro mechanism of plastic yielding in 
the yielded zone around the crack tip, which would better describe the real elastic-plastic 
state of the material in these zones. Our aim has been to model cohesive stresses in a plate 
made of a strain-hardening material. A hypothesis of variable cohesive stresses ( )xYσ  within 
the plastic zone has been introduced. Many authors tried to model a non-linear distribution of 
the cohesive stresses in a yielded zone in front of the crack tip, in the last decade, for example 
[5-7], [10-12] and so on. In the paper [6], the authors took same cohesive stress distribution 
on the plastic zone ( )xp , as it was defined in the paper [5]. But, they didn't answer the 
question, how are the obtained results accurate? Is the expression (7) founded on the 
experimental observations? In the papers [7] and [11] the author modified the Dugdale strip 
yield model in order to include the work hardening properties of a material. He adopted the 
constitutive equation and proposed the distribution of the elastic-plastic strains within the 
cohesive zone in the form (8). Wnuk and Legat [10] submitted a two-parameter nonlinear 
function, in the form (10) or (11), for representing the cohesive stress distribution within the 
cohesive zone. Similar result for cohesive stress distribution was obtained in the paper [12].  

In the present paper we have not succeeded to find an accurate law of distribution of 
cohesive stresses ( )xYσ  in the yielded zone, we have taken the law of distribution according 
to the expression (7). If this hypothesis were proved, then it would be possible to determine 
precisely, using analytical methods, the magnitude of the plastic zone around the crack tip  
(17), as well as the crack tip opening displacement 

pr

tδ (CTOD), (29). Also, we have shown 
that if the cohesive stress ( )xYσ  in the yielded zone was linearly distributed, we could 
determine, in an analytical way, the length of the plastic zone  around the crack tip, by 
solving, numerically, the transcendent equation (25). 
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