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Abstract 
The Wöhler curve approach to fatigue life assessment is here extended to include variable 
amplitude loads with mean value influence. This is done through the definition of an 
equivalent load amplitude, which depends both on the usual damage accumulation hypothesis 
and on some mean value correction model. The method is exemplified by using the Gerber 
model, the mean stress sensibility model and different parametrisations of the crack closure 
model. All models are applied to three different data sets, including aluminium, welded steel, 
and cast steel specimens subjected to different spectrum loads. The results are interpreted in 
relation to the complexity of the different models and the trade off between complexity, 
number of tests and random scatter is discussed in the context of prediction uncertainty. 

Introduction 
In industrial practice the Wöhler curve is the main design tool for fatigue life. However, the 
concept of Wöhler curve design varies over different applications. In the simplest case, the 
strength of a component is determined by laboratory tests at constant amplitude by estimating 
one or two parameters, and service loads are predicted by some variant of equivalent stress 
ranges, usually based on the Palmgren-Miner cumulative fatigue hypothesis. 

On the other hand, fatigue is known to be a very complex phenomenon, and a model close 
to reality should include not only the Wöhler parameters, but also for instance the local mean 
stresses, the yield stress, crack closure and threshold characteristics, the defect contents, or 
the grain size. However, these features may not be known to the engineer, at least not in the 
design stage, and therefore most of these must be excluded in engineering practice. In the 
case of empirical or semi-empirical modeling, where parameters are fitted from experimental 
results, there is a clear trade off between model complexity and knowledge about influentials 
that can be studied in mathematical terms. In this paper we will demonstrate this by studying 
the problem of including the mean stress influence in the simple Wöhler concept. 

We start at a method of predicting fatigue life at variable amplitude using the concept of 
an equivalent stress range presented in Johannesson et al. [1]. The Palmgren-Miner 
hypothesis in combination with the Basquin equation leads to the following predicted life 

βα ˆˆ −⋅= eqpred SN ,
 
(1) 

where the parameters α̂ and are estimated from laboratory tests and  is determined 
from the service stress spectrum 

β̂ eqS
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Here { }niS iai ,,2,1;, , K== νψ  is the service stress spectrum represented by its load 
amplitudes  and their corresponding relative frequencies iaS , iν , counted by for instance the 
Rain Flow Count method. This approach can also be described as the statistical model 

( ) ( ) ,;,;ln εθψεβαψ +=+= ffN      ( ) eqSf lnln, βαθψ −=
 
(3) 

where  [ ]βαθ ,=  and ε  is an error term modelled as a random variable with variance . 
The parameters in the model are estimated by the least squares method, i.e. by performing a 
number of fatigue tests with different spectra and finding the parameter values that minimizes 
the squared error. The estimated parameter vector  is 
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where  is the number of cycles to failure when using the spectrum jN jψ , and n is the 

number of reference tests. From the test results one can also find an estimate of the 
variance  of the error term 

2s
2σ ε : 

 ( )[ ]∑
=

−
−

=
n

j
jj fN

pn
s

1

22 ˆ;ln1 θψ ,

 
(5) 

where p is the number of parameters in the model, which in this simplest case equals two. 

Mean value influence 
The general formulation of Wöhler curve modelling by Eq. (3) makes it easy to include new 
variables and parameters in the model by extending the dimension of θ .  

We here make such extensions by including the mean values of the load cycles into the 
model. This can be done in several ways, resulting in different functions ( )θψ ;kf , where k 
indicates different concepts like the Gerber correction, a linear model in the Haigh diagram, 
or a crack closure approach. The different concepts include different number of additional 
parameters, and the resulting estimated models will give decreased variances of their error 
terms. We will formulate each mean stress correction method by the following method: Each 
cycle with amplitude sa and mean sm is transformed into a damage equivalent cycle with 
amplitude ( mak

k
a sshs , )~ )( =  at mean zero. An equivalent load can then be constructed, 

corrected for the mean stress effect, by using the amplitudes ( imiak
k
ia

k
ia sshsS ,,
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,
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(2), and this modified equivalent load can be used both for estimation and prediction. 
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The first correction is according to Gerber 
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where su is the ultimate tensile strength for the material. If the tensile strength is known 
beforehand, no additional parameter need to be estimated.   

The second correction is a linear curve in the Haigh diagram, 

( ) mamaa Msssshs +== ,~
2

)2( , 

where M is the so-called mean-stress-sensibility of the material [2]. The new parameter M 
may be known for some materials, but will here be included in the parameter vector θ  and 
estimated from fatigue tests. 

The third and fourth corrections are based on the crack closure concept. Here we use the 
simplified assumption that there exist a constant crack closure level, and then the following 
effective stress range is defined for each stress cycle: 
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The constant closure level Scl depends on the spectrum, and two different models of this 
dependence will be used here. First we will use a simple crack closure formula, here called 
proportional closure, 

( )GGG
p

cl SScSS minmaxmin
)( −+= , 

where c is the closure parameter and SminG and SmaxG are the global minimum and maximum 
in the spectrum, respectively. The corresponding equivalent amplitude is 
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The fourth correction is based on another empirical model for crack closure, namely the 
DuQuesnay/Topper formula [3]: 
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where a and b are the closure parameters and Sy is the cyclic yield strength of the material, 
and the formula is based on the global maximum and minimum as in the previous model. The 
corresponding equivalent amplitude is 
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Parameter estimates from this model appear to be strongly correlated which sometimes leads 
to numerical difficulties. Therefore a variant of this model is used, where the ratio between 
the parameters are regarded as constant, 8.1/ =ab , and thereby reducing the complexity of 
the closure model to one parameter. 
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Optimal complexity 
By comparing each decrease in error terms with the influence of the mean value variation one 
can draw conclusions about what model is the most appropriate at different applications and 
how many laboratory tests that are needed to make use of the extra information in mean 
values. A general result for linear regression models [4] shows that the model should be 
chosen that minimize  
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where p is the number of parameters in the model, n is the number of tests and  is the 
estimated error variance Eq. (5), which depends on both the number of tests and the model 
complexity. In our case the models are not linear in the parameters, but the formula Eq. (6) is 
still used as an approximate criterion for model choice. 

2
, pns

Three data sets 
Three different applications have been investigated with respect to the mean value influence, 
one including welded mild steel (SP data), one with plain specimens made of two different 
aluminium alloys for aircraft applications from Saab (Saab data) and one with an automotive 
suspension arm of cast steel from Volvo Trucks (Volvo data).  All data sets contain variable 
amplitude fatigue lives where the mean value differs between the applied spectra. Some 
spectrum tests were replicated and based on these results the standard deviations of the 
inherent scatter have been estimated for comparison. The mean value concepts given above 
have been used in different ways. In fact, sometimes the parameters in the models are 
available from literature or previous tests and then they do not need to be estimated. This 
would result in more precise predictions, since the loss of precision according to Eq. (6) 
depends on the number of estimated parameters p. However, literature values may not always 
be trusted, which will be seen in our results. The results are here only illustrated in figures 
illustrating their prediction abilities in view of the different variance measures.  The complete 
results are available in the report [5].  

Specimens and spectra 

The SP test object was a load carrying butt welded specimen of mild steel with the ultimate 
tensile strength 454 MPa. The spectra were originally constructed in purpose of testing the 
validity of the Palmgren-Miner rule and study the irregularity factor on fatigue life. Two 
types of load sequences were constructed, characterized by their level crossing spectra, one 
appearing as concave and one as convex in the level crossing plot. Each type was constructed 
in two versions, with irregularity factors 0.99 and 0.50, respectively. By using different scale 
factors and offsets these spectra were used here to study the mean value influence. 

The Volvo test objects were suspension arms made from nodular cast steel with the 
ultimate tensile strength 510 MPa with quite rough surfaces at the locations of maximum 
stress. The load sequences were constructed from a raw signal measured at a proving ground 
for cars. The signal was filtered in different ways giving stress spectra with different contents 
of small cycles. Since the original sequence was quite irregular one could expect a certain 
mean value influence of the deletion of small superimposed cycles. 

The Saab objects were aluminium specimens of two different alloys, with ultimate tensile 
strengths of 496 MPa and 538 MPa, respectively. Two types of  specimens were used, with or 
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without an initial artificial defect. In this paper we only discuss results from one of the four 
sets, namely the 538 MPa material without initial defect, while the other results can be found 
in [5]. The load sequences used in this investigation were three different fighter aircraft lower 
surface wing root manoeuvre spectra and one Gaussian spectra. All spectra were scaled and 
given different offsets with the purpose of investigating mean value effects. 

Results 

The Saab data results in Figure 1 show considerable improved prediction ability when mean 
value influences are included. The standard deviation of the residuals decreases from 0.49 
with no correction to 0.28 when using the DuQuesnay closure model with one or two free 
parameters. The same model with fixed parameters from [6] gives worse results than the 
reference case and also the proportional closure model is discriminated. The number of tests 
is here large enough to make the prediction variance very close to the residual variance and 
one can afford to have the largest complexity, including four parameters, in the modelling. 
Comparing the resulting error measures with the replicate standard deviation shows that there 
is still a significant model error which is not captured by the mean value correction. 
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Figure 1. Error measures for one of the Saab specimen types. The broken line shows the 
estimated standard deviation due to inherent scatter. 

 

The Volvo results are shown in Figure 2. Here, the results are based on only nine tests 
which results in a large difference between prediction and residual variation. This is in 
particular emphasized in case of more complex models. The smallest residual scatter around 
the models is not significantly larger than the inherent scatter. The conclusion from the 
results is that the performed tests are not sufficient to extract any mean value influence, but 
the simplest model should be used, without taking mean values into account.  

The SP results are shown in Figure 3. Here, apparently none of the models can catch the 
physical behaviour, but the Palmgren-Miner rule fails. This conclusion is based on the 
observation that the inherent standard deviation is almost half of the residual standard 
deviation for the best fitting model. Among the different mean value correction methods the 
two DuQuesnay models with fixed parameters give the lowest residual variances. 
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Figure 2. Error measures for the Volvo data set. The broken line shows the estimated 
standard deviation due to inherent scatter. 

The first of these uses parameters from [6] and the other from a previous test on the same 
subject as at the present investigation. The DuQuesnay parameters from both sources seem to 
describe the present situation good enough and the alternatives of estimating them (DuQ1 and 
DuQ2) only increase the complexity without any gain in model precision. 
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Figure 3. Error measures for the SP data set. The broken line shows the estimated standard 
deviation due to inherent scatter. 

 

Discussion 
For the Volvo results it is clear from Figure 2 that the optimal choice is to disregard any 
possible mean value correction. The lowest prediction uncertainty is obtained without any 
mean value correction and the two models with fixed parameters do not improve the 
prediction capacity. This illustrates the fact that if the number of tests is small and the 
inherent scatter is large it is useless to introduce complicated models. In fact, in this particular 
case, no model errors can be detected since no difference can be seen between the regression 
standard deviation and the replicate standard deviation. 

For the Saab results a completely different picture appears. Figure 1 shows that the most 
complicated model, the DuQuesnay model with two estimated parameters, gives the lowest 
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prediction variance. Note, that the difference between the expected prediction variance and 
the regression variance is small when the number of test is large and that added variables 
have small influence in the factor ( )1−− pnp  in the prediction variance Eq. (6). The 
difference between estimating one or two parameters in the DuQuesnay model is small, 
which indicates that our initial estimate of the relationship between the two parameters 
happens to be good in this case. The proportional closure model is much worse than the other 
models with estimated parameters, which suggests that this simple way of modelling closure 
does not comply with physics. The fixed parameter DuQuesnay model also gives bad results. 
This shows that the model predictions are quite sensible to the parameters in this case and 
that it may be dangerous to trust literature data. 

The SP results represent a case when the physical modelling is poor since the distance 
between the prediction error and the replicate error is considerable. This can be seen as a 
result of the different types of spectra, convex or concave, and treating each type separately 
would give better results. Nevertheless, if some of the models still must be used one can 
conclude that the DuQuesnay model with fixed parameters according to the earlier 
investigation is the best choice.  

The DuQuesnay-Topper model for crack closure includes one material parameter and two 
empirical parameters. In our applications we have used this model in different ways, namely 
by estimating one or two parameters from the actual tests or use previous investigations for 
the parameter values. From our results we can conclude that these values are not generally 
applicable; for the Saab aluminium alloys they even gave worse model fit than for the 
simplest model. However, in the SP application we had access to a pair of parameters 
estimated from an earlier investigation on the same material and type of specimen and these 
parameters give the best predictions. 

In general the choice between fixed or estimated parameters depends on the trade off 
between the precision in the fixed parameter values, the scatter, and the number of tests. For 
each specific engineering application judgements must be done with regard to such 
considerations. In many situations there may be small steps in material and component 
development and old parameter values may be safely used, maybe with some updating 
technique. 

Our one parameter DuQuesnay model is a compromise between fixed and estimated 
parameters. It may be the fact that the differences between different materials on crack 
geometries can be caught with only one parameter and that the relationship between the two 
parameters is fairly constant. Of course, such conclusions cannot be drawn on this small data 
set, but it could be a possible subject for further investigations.  

It is interesting to note that both the closure concept with the DuQuesnay-Topper model 
and the mean stress sensibility model give improved models with respect to their prediction 
abilities. The two concepts are quite different since the mean stress sensibility model adjusts 
the amplitude individually with the local cycle mean, but the closure concept used here 
assumes a global closure level which each cycle is adjusted against. A possible extension of 
the closure concept is to allow a dynamic closure level. Such a model could be seen as a 
compromise between these two concepts, but is much more complicated to apply. 

The classical Gerber correction is a fixed parameter mean stress sensibility model. It is not 
very successful in our applications, but this may be due to our uncritical use of the ultimate 
tensile stress for the pure material in the Gerber model. Maybe some considerations must be 
done with regard to the special weld properties for the SP case, for the stress concentrations 
in the SAAB case or for the surface roughness in the Volvo case. But, in that case an 
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experience based fixed parameter in the mean stress sensibility model may be a good 
alternative. 

Conclusions 
We have used a general approach of estimating model parameters directly from experimental 
lives at variable amplitude fatigue tests. The flexibility of the approach makes it easy to apply 
different models for mean stress corrections and thereby demands rules for decisions in a 
specific industrial application. The concept of minimizing the prediction uncertainty has been 
presented as a tool for such decisions, which will depend on the trade off between model 
complexity, random scatter and the number of reference tests. 

Among the investigated mean stress influence concepts the crack closure model with the 
DuQuesnay-Topper formulation, and the mean-stress-sensibility seems to be the best ones. 
They perform almost equally well, with a slight advantage for DuQuesnay-Topper. This is 
the case when the parameters are estimated from our data. Using literature data for 
parameters seems to be dangerous, since the sensitivity for the parameter values is quite 
large. However, in the one case where parameter values were available for the same 
specimens these proved to be useful. 
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