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Abstract 
During fracture of membranes loading often produces buckles above and below the crack 
surface. This changes the stress state surrounding the crack-tip and stresses in the 
neighbourhood of the crack-tip posses a weaker singularity than r-1/2. As a result, fracture 
occurs when the crack-tip stress distribution is different as compared with that when buckling 
is artificially prevented. Therefore the conditions for transfer of lab results to real structures 
are changed. The weaker singularity is here utilised to formulate an adopted fracture 
mechanical theory. An approximate application is made based on an assumption that the 
buckled area of the paper is incapable of carrying load. This region is approximated with the 
region that is under compressive load at plane stress conditions. The result is compared with 
experiments performed on paper. The importance of the linear extent of the process region 
has on the energy available for fracture is discussed. 

 

Introduction 
Fracture mechanical theories usually assume that the fractured specimen remain in its original 
plane. Fracture in thin sheets often occurs in the presence of displacements perpendicular to 
the original plane of the sheet either due to motion of the entire sheet, which results in a 
tearing fracture mode or due to local buckling of the sheet, usually around the crack surfaces. 
In this paper a fracture mechanical theory that recognises buckling is proposed. 

The motivation for the interest fracture of thin sheets is its frequent appearance in pipes, 
balloons or structures with skin, like aircrafts, boats and cars. For example, a crack running 
along a pressurized pipe will be subject to tensile stress ahead of the crack and either 
compressive loads above and below the crack surfaces or undulating small bending stresses 
accompanied by buckling. This is also the case when the hull of a ship is dented and torn at 
grounding. In nuclear pressure vessels large plate structures are arranged to control or to 
improve the water flow in the reactor. Small fatigue cracks in these lead to costly and 
possibly unnecessary repairing often because the risk of failure cannot be predicted due to 
gross buckling and tearing. 

Buckling in connection with fracture of thin sheets/members has received some attention 
[1-3]. However, in view of the practical importance far too little is understood of the effect of 
buckling on the fracture toughness. Several reasons are obvious. First the mechanical state is 
difficult to compute. A three-dimensional analysis for large displacements is generally 
needed. For thin sheets, buckling loads are much smaller than the loads at fracture and higher 
loads usually lead to multiple buckling. This may cause numerical difficulties. Second the 
state of the fracture process region may be affected by the out of plane shearing 
accompanying the buckling.  

Our aim is to increase the fundamental understanding of fracture of membranes. Thus, an 
attempt to create a connection between testing of paper and prediction of failure loads a linear 
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fracture mechanical theory is developed based on a perception of buckling as a weakening of 
the sheet. Here an asymptotic field surrounding a crack-tip is computed presuming that the 
load carrying capacity of the buckling parts of the sheet is insignificant. The buckling parts 
are considered to be stress free, which leads a modification of the boundary value problem 
posed by traction free crack surfaces. The theory is examined in view of experiments on 
paper. 

 
Theory 
At small scale yielding the stress and strain field surrounding crack-tips is known. The field 
surrounds the crack-tip both in a test specimen and in an engineering structure. This is the 
basis for testing and prediction of failure loads in real cases. The only variable of the local 
load is the strength of the field. At characteristic events, such as crack growth initiation, 
fatigue at a specified rate or whatever could be thought of the strength of the crack-tip field is 
the same in the test specimen as in any other structure. 

The stress field in the body is observed in two magnification levels. An outer field gives 
the stresses in the body and an inner field gives the near crack-tip stresses. An expansion of 
the outer field has a leading term that dominates as the distance to the crack tip decrease, 
whilst the plastic zone is regarded to be small. On the other side, with the focus on an inner 
field on the scale of the extent of the non-linear region surrounding the crack-tip, the stress 
field is affected by deviation from linear elasticity caused by non-linear material behaviour 
during plastic deformation and the material degradation preceding fracture. Outside the non-
linear region stresses can be expanded in a series with the same leading term as mentioned 
before for the outer field, but now this term dominates as the distance become large, i.e., 
large in relation to the linear extent of the non-linear region. If the non-linear region is small 
enough there is an annular region where the stresses are uniquely given by the strength of a 
single term stress field defined by its amplitude. The inner region or the crack-tip processes is 
totally cut out from any influence of remote load apart from this amplitude. 

To advance this, a thin sheet of finite size containing a crack is considered. The sheet is 
subjected to tensile stress normal to the plane of the crack as shown in Fig. 1. A Cartesian 
coordinate system is placed in the sheet with the origin in the centre of the sheet and a polar 
coordinate system, r and θ, is attached to the crack tip at x = a and y = 0, defined with θ = 0 
in the direction of the positive x-axis. The stress field in the vicinity of the crack tip may then 
be written as follows: 

    
σij = k σo

r σo
2

KIc
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−s

fij (θ) + O(r / a)0 + O(rp / r ) ,   as r/a → 0 and rp /r → 0, (1) 

where rp is the linear extent of the non-linear region at the crack-tip. The non-dimensional 
coefficient k is the amplitude of the stress field. The angular functions fij are known. The 
distance from the crack-tip is given in relation to two material parameters, the fracture 
toughness, KIc, and a characteristic stress, σo, e.g., the yield stress.   

Should the specimen not buckle the expression become reduced to the stresses of linear 
elastic fracture mechanics by putting   k = KI /( 2π KIc ) , observing that in this case s = 1/2.  
The result for linear fracture mechanics is based on a calculation of a boundary value 
problem with traction free crack surfaces of the leading term. 
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FIGURE 1. The sheet with central crack and the expected buckled region. 

 

Calculation of a crack that remain in plane show that stresses are compressive above and 
below the crack, close to the crack surface. These stresses are relaxed if the sheet buckles. In 
this preliminary analysis we assume that the region with compressive stresses, when plane 
stress conditions are assumed, coincide with the buckled region for a real case. Further the 
analysis assumes that the buckled region around the crack has negligible load carrying 
capability. Therefore in the model developed here the stresses in the sheet are regarded to be 
as if the material of buckled region around the crack were removed leaving an opening larger 
than the crack.  

This affects the exponent s in (1). The shape of the buckled area near the crack-tip 
provides an angle, θο, which is used to calculate s (see Fig. 2). The boundary conditions in 
the vicinity of the crack tip are the traction free boundaries of the notch that remains after 
removal of the material in the compressed and supposedly buckled region. These boundaries 
are found at θ = ±θo. 

Letting stresses be represented by the expressions (cf. e.g. Broberg [4]) 

    
σrr =

∂2Φ
r∂r
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where the Airy stress function, Φ, satisfies the biharmonic equation 

∆∆Φ = 0   . (3) 

By assuming an Airy stress function of the following form 

    
Φ = r 2−s Acos (s − 2)θ[ ]+ Bcos(sθ){ }   , (4) 

the boundary conditions  

    σθθ = σrθ = 0   , (5) 

for traction free notch edges give the following equation 
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    (s −1)(s − 2) ssin sθo cos(s − 2)θo − (s − 2)sin(s − 2)θo cossθo{ }= 0   . (6) 

This equation generates all admissible exponents s. For the cases investigated only one real 
root was found in the interval 0 < s < 1.  

The buckled region is computed using finite element method ABAQUS [5]. The angle θo 
is determined by observation of the border across which the pressure switches sign. This is 
shown schematically in Fig. 2.  

Since the crack-tip singularity, s, depend on the extent of buckling and is usually different 
from 1/2 there will not be any stress intensity factor defined in a conventional way (cf. 
Williams [6]). Here the stress intensity factor KI is defined as 

    
KI = σ∞ πa f ( a

w
, h

w
)    , (7) 

where σ∞ is the uniaxial stress at infinity, and a, h and w are length parameters according to 
Fig. 1. The stress σ∞ is calculated from prescribed displacement, v, as σ∞ = (v/h) E. The 
function f is used to compensate for finite specimen dimensions (cf. Isida [7]). Fracture 
toughness KIc is defined as the stress intensity at onset of crack growth. 

The relation 

σ ij = σ o(r /rp )−s fij    , (8) 

give the stress in the annular ring dominated by the single term given by the expression (1). 
Here expressed as a function of parameters specified for the non-linear near tip region. The 
relation 

σ ij = σ∞(r /a)−s fij    , (9) 

Give the same stresses as in (8) expressed using remote stress field and specimen geometry. 
Expected autonomy of the non-linear region at the crack-tip implies that this region is 
identical and independent of crack length at, e.g., onset of crack growth. Therefore 

    σ∞
(ao )(r / ao )−s = σo(r / rp )−s = σ∞

(a)(r / a)−s   , (10) 

The meaning of this become clear if the critical stresses (at onset of crack growth)   σ∞
(ao )  

for half crack length ao and      at half crack length a are inserted into (7) to compute 
fracture toughnesses, K

σ∞
(a)

Ic = KI. The result can be written 
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FIGURE 2. Enlarged view of the crack-tip. 
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f (ao / w, h / w)

KIc
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where      is the fracture toughness for a half crack length a and    dito for a half crack 
length a

KIc
(a) KIc

(ao )

o. For a large specimen for which a << w and h << w this becomes 

    KIc
(a) = a / ao( )1/ 2−s

KIc
(ao )    . (12) 

Assume that material testing is performed for the crack length ao. Since buckling leads to a 
weaker stress singularity, i.e., s < 1/2 (12) shows that the expected toughness according to (7) 
increases with increasing crack length. Not considering buckling would then underestimate 
the strength of a membrane if testing is performed on specimens with small cracks whereas 
the opposite holds for predictions for specimens smaller than the tested samples. 

 
Finite element simulations and results 
Simulations are performed for two crack types, edge cracks and central cracks. The material 
is regarded as linear elastic described by the modulus of elasticity and Poisson’s ratio. Plane 
stress is assumed.  The sheet is subjected to displacement load as shown in Fig. 1. Along the 
edges where load is applied the sheet is restrained from movement in the x direction. The two 
edges perpendicular to the crack plane are free along its entire length. For edge cracks one 
half of the sheet is simulated and for central cracks one quarter with proper boundary 
conditions along symmetry lines.  

Buckling in the vicinity of a crack-tip is confined to a region π ≤ θ ≤ θο. The angle θο is 
obtained virtually by observing the zero pressure contour of the finite element result. The 
results are given as 

  α = π −θo    . (13) 

The resulting angles α are given in Table 1 for different geometries. For a central crack, α 
decreases with increasing crack length, a. The limit for small cracks is of the order of 40°. 
For central cracks larger than say 0.2 of the specimen width, α seem to be 10° - 12°.  For 
edge cracks α is of the order of 16° in the limit for small cracks. For larger cracks when a 
approach w the buckling region is confined to α around 10°. 

The exponents s corresponding to these angles α are calculated using (6) and (13). Only 
roots in the interval 0 < s < 1 are considered. Table 1 show the results. The variation is 
observed to be quite large whereas s may be as small as 0.15, e.g., for a small central crack. 
As expected all geometries give a weaker singularity than the one for in-plane linear fracture 
mechanics, i.e., s < 0.5, except for when no buckling occurred in which case s is 0.5. 

Using the calculated singularity it is possible to establish a relation between toughnesses 
defined by the stress intensity factor of (7). The relation (12) is used to compute     , 

and      for crack lengths a = a
KIc

(ao )

    KIc
(2ao ) KIc

(10ao )
o, 2ao and 10ao respectively. The ratios a/w and h/w 

are kept constant. The results displayed in Table 2 show the ratios      and 
. As observed differences may be very large. However if very small central 

cracks are excluded the relative differences in K

KIc
(ao ) / KIc

(2ao )

    KIc
(ao ) / KIc

(10ao )

Ic are below 10% when a double size 
specimen is tested. If specimen size is increased 10 times (apart from thickness) the 
prediction is that the increase of KIc may be up to two times larger for a small centred crack 
and 1.35 times larger for an edge crack. 
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TABLE 2. T

 

a/w s 

0.010 0.157 

0.050 0.278 

0.500 0.443 

0.667 0.438 

0.833 0.433 

 

 
Experiments 
A series of experimen
the proposed theory. S
the finite dimensions 
specimens large it is be
TABLE 1. Notch opening angles and stress 
singularities. For all geometries h/w = 1. 

 Central crack Edge crack 

a/w α s α s 

0.010 40° 0.157 16° 0.370

0.050 29.1° 0.278 11.9° 0.424

0.100 16.5° 0.390 5.9° 0.465

0.200 12.1° 0.423 4.5° 0.474

0.300 11.8° 0.425 5.7° 0.466

0.400 12.2° 0.422 5.4° 0.468

0.500 9.3° 0.443 5.8° 0.465

0.667 10° 0.438 6.8° 0.459

0.833 10.7° 0.433 9.4° 0.442

heoretical fracture toughness as function of crack length.   For 
all geometries h/w = 1. 

Central crack Edge crack 

  K Ic
(ao ) / K Ic

(2ao )   K Ic
(ao ) / K Ic

(10ao ) s 
  K Ic

(ao ) / K Ic
(2ao )     K Ic

(ao ) / K Ic
(10ao )

1.268 2.203 0.370 1.094 1.350 

1.166 1.667 0.424 1.054 1.191 

1.040 1.140 0.465 1.025 1.084 

1.044 1.153 0.459 1.029 1.100 

1.048 1.167 0.442 1.041 1.143 
ts of considerably large specimens were performed to find support for 
pecimens are chosen fairly large to avoid the complications because of 
of the non-linear region surrounding the crack tip. By choosing the 
lieved the effects of non-linear material behaviour can be avoided.  
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An in house designed testing machine was used. A complete description of the 
experimental set up and the mechanical conditions applied in the experiment is given in 
Espinosa [8]. Paper samples 2000 mm long and 1500 mm wide were used. The paper was cut 
from a 50 x 1.5 m2 brown paper roll, with a paper thickness of 0.1 mm. Buckling with the 
appearance as in Fig. 3 was observed during loading (the photography shows buckling of 
tested aluminium foil). 

Crack lengths, 2a, varied from 50 mm to 1400 mm. The results are plotted in Fig. 4. A 
large scatter is observed. It can be observed how the results follow the same trend. There is a 
clear increase of KIc with increasing crack length. A theoretical curve for α between 12° and 
15° giving s = 0.4 is included in the figure. 

 

Discussion 
The buckling gives rise to redistribution of the stresses in the neighbourhood of the crack-tip. 
The theory based on approximate estimation of the extent of the buckling region around 
cracks is used. The estimation of the extent of the buckling region is done by observing the 
compressed region that develops at plane stress. The focus is on the buckling in the vicinity 
of the crack-tip. Stresses may here be decomposed into a square root singular term, a constant 
stress, the so called T-stress and other second order stress terms. Because singular stress 
dominate close to the crack-tip it becomes obvious that the angle θo limiting the buckling 
region has to approach 180° as the crack tip is approached. However this is not visible on a 
reasonable length scale and there is no reason to go closer to the crack tip than the extent of 
the non-linear region surrounding the crack-tip. The proposed procedure is motivated for, 
e.g., paper since material behaviour for this materials is non-linear at least a few mm2 around 
the crack-tip. Engineering cracks in paper may range from a few cm to a meter. This gives a 
ratio of linear extent of non-linear region to crack length of 1/1000 which we believe to cover 
in the finite element analysis.  

There may be doubts as regards the influence of the non-linear region for small cracks and 
cracks approaching the width of the specimen. These effects were however ruled out when it 
was observed that the short crack deviation from linear behaviour was not changing when the 
size of the specimen was changed. 

In the present paper the implications of assumed linear fracture mechanics (7) was 
investigated. However, it is obvious that a modified fracture mechanical theory, when 
needed, should be based on the amplitude k (see (1)) and its critical value at crack initiation. 

 
Conclusions 

An exact theory for fracture of buckling membranes is proposed. Some approximations are 
made to perform a simplified analysis. The buckling region is never calculated. Instead this 
region is approximated with the region having compressive load during loading in plane 
stress. The buckling region does not carry any significant load. Here the region is assumed 
not to carry any load. Therefore, a singular stress field weaker than the square root singular 
stress field resides in the crack-tip vicinity. The strength of this field determines the 
toughness of the membrane as a function of the crack length. 

The following conclusions can be drawn 

- Buckling affects the fracture toughness 

- Experiments give support to the theory 
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FIGURE 3. Buckling pattern FIGURE 4. KIc results for the different tests. 
 Dashed curve shows the theoretical result for 
 s = 0.4.  
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