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SUMMARY 
The fatigue life of a welded aluminium T-joint made from beams with rectangular hollow 
section (RHS) has been predicted using a crack propagation analysis and compared with 
experimental results from joints with different residual stress levels. To include the effect of 
the residual stresses, the stress ratio was calculated locally and, via Walker’s equation, 
introduced in the analysis. How to obtain Walkers exponent has been discussed in detail. The 
introduction of a local stress ratio provides good agreement between the experimentally and 
the analytically found S-N-curves. The effect of the residual stresses was successfully 
included in the analysis. 

INTRODUCTION 
Welded structures are known for their low fatigue strength, which mainly results from the 
existence of crack-like defects, high stress concentrations and tensile residual stress fields 
caused by thermal expansion. Aiming at an ever more efficient use of material and increased 
reliability, the fatigue behaviour of welds is a pivot point. Of course, welding may be 
replaced by some alternative joining method with higher fatigue strength, e.g. adhesive 
bonding [1]. This, however, is often neither possible nor wanted. In order to enhance the 
fatigue strength of welded joints, the weld may either be placed in a less stressed area or must 
undergo a post-welding treatment, e.g. shot peening or grinding. Shot peening introduces 
compressive residual stresses, whereas grinding reduces the stress concentration and removes 
welding defects. When compressive residual stresses at the weld toe are introduced, it is, of 
course, desirable to actively use their effect in design. This, however, can only be done if the 
residual stresses are known and their beneficial effect can be predicted. A possibility to 
achieve this is shown in this paper and the obtained results are compared with experimental 
data. 

THEORY 
Assessing the fatigue life of a welded component is complicated by large variations in weld 
geometry, welding defects, residual stresses and the question to which extent the fatigue life 
is covered by crack initiation and propagation. If no post-welding treatment to remove 
welding defects has been performed, it must be reasonable to assume a dominance of crack 
propagation and hence to assess the fatigue life using a crack propagation analysis. The 
assumption that crack propagation is the dominant part of the fatigue life is supported by the 
S-N-curve slope of approximately 3, given in various standards for welded structures. 

The most frequently used model to describe fatigue-crack propagation is Paris’ law, 

d d ma N C K= ∆  .
 
(1) 
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Applying Paris’ law, starting at the threshold stress intensity factor range, , will 
underestimate life since 

thK∆
d da N  near threshold is over-predicted. On the other hand, the real 

near threshold behaviour is difficult to assess and, if the cracks are short, they may even 
propagate below the long crack propagation threshold and this in addition at high rates. Near 
final fracture behaviour is not included in Paris’ law and when using it, the number of cycles 
spent when approaching  is overestimated. However, the error made is very small, since 
the period near final fracture contributes only a small fraction to the total life. 

IcK

Mean stress effect 
The constant C  in Paris’ law depends on mean stress. To express this dependency, an 
equation suggested by Walker [2] may be used. He proposed an effective stress range at 

, 0R = Walkerσ∆ , for crack propagation and fatigue failure of non-cracked structures as a 
function of maximum stress, maxσ , and stress ratio, R . Expressed in terms of stress intensity 
factor range, Walker’s equation can be written as 

( )1Walker 1K K R γ−∆ = ∆ −  .
 
(2) 

One must distinguish between the Walker exponent, γ , for crack propagation and fatigue of a 
non-cracked component. In this paper γ  denotes the Walker exponent for crack propagation. 
Walker’s approach is not limited to positive stress ratios, however, extrapolating it to 
negative stress ratios may over-predict the effective stress intensity factor range, since some 
of the compressive part of a cycle would contribute to WalkerK∆ . Assuming that only the 
tensile part of a cycle, hence , contributes to crack propagation, the Walker exponent 
must be set to zero when . 

maxK
0R <

Short cracks 
Paris’ law is strictly valid for the stable growth of long cracks only. To account for 
geometrically short cracks a concept involving the parameter , often called the 
characteristic or intrinsic crack length, suggested by El Haddad et al. [3], may be used. 
Härkegård [4] generalized this approach by including the geometry function F  which leads 
to 

0a

( )0πK F a aσ∆ = ∆ +  .
 
(3) 

The characteristic crack length, which marks the intersection between the behaviour of a 
structure containing a long crack and a non-cracked structure in the Kitagawa-Takahashi-
diagram, is found from 

( )2
2

0 th D πa K F σ= ∆ ∆  ,

 
(4) 
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where Dσ∆  is the fatigue limit.  and thK∆ Dσ∆  depend on mean stress. If the mean stress 
dependencies can be expressed with Walker’s equation and D thγ γ= ,  is found to be 
independent of mean stress. However, in general 

0a

D thγ γ≠ . It must be noted that extending the 
 approach to short cracks is not straightforward, since the requirements for  to be 

valid are not fulfilled. 
K∆ K∆

A crack propagating at a weld toe 
In general the geometry function, , in Eq. 3 does not account for global and local stress 
concentrations resulting from attachment and weld toe radius, respectively. If, however, the 
initial crack is short enough, it will be subjected to these raised stresses and therefore 
propagate faster near the surface than the same crack in a plate. To include this effect a 
function 

F

kM  may be introduced, which is formally defined as the ratio of the stress intensity 
factor of a surface crack at the weld toe and the stress intensity factor of a the same surface 
crack in a plate. Bowness and Lee [5] derived a set of equations to calculate kM  for welded 
joints made from plates with a non load carrying weld, see Fig. 1. 
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FIGURE 1.: (a) Geometry and variables used to derive kM  equation [5], (b) kM  
( 45θ = ° , / 2t = ) for “as welded” weld toe radius [5] and F  as  functions of a tl . /

EXPERIMENTAL RESULTS 
T-joints, see Fig. 2a, produced from extruded 6082-T6 aluminium alloy rectangular hollow 
section profiles, were welded and tested at SINTEF Materials Technology, see Tveiten [6]. 
The profiles had a cross section of 40 60×  mm with a wall thickness of 3 mm. The butt end 
of one tube was welded against the flat side of the other, see Fig. 2a, using fully automatic 
GMA-welding. Two series of specimens were tested. Welding the joints of the first series 
(batch 1), the profiles were simply kept in position, whereas in the joints of the second series 
(batch 2) a compressive residual stress field in loading direction at the weld toe was 
introduced. This was accomplished by elastically pre-straining the chord during the welding 
process. Examining the joints for initial cracks, none were found in the specimens of batch 1, 
whereas crack like defects with  depth were detected in some of the batch 2 
specimens. Detecting initial cracks is, however, problematic, since they may be covered by 
cold flow at the weld toe.. 

0.1 mm≈
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FIGURE 2.: (a) Tested T-joints, (b) test results [6]. 

The specimens were subjected to 4-point bending at nom 0.1R = . During testing it was found 
that cracks first become visible at one of the corners along the weld toe, see arrows in Fig. 2a. 
This behaviour could be expected, since the stress concentration is highest in those areas. 
Thereafter the crack propagates to a higher degree along the weld toe than a similar semi-
elliptical crack in a plate, which is probably due to the high stress concentration and the 
existence of numerous crack-like defects along the weld toe. These defects grow 
independently at first and eventually coalesce to a large crack. Final fracture occurs almost 
immediately after the upper flange has fractured completely. 

Using the least mean square method, Basquin’s law, 
mN A σ −= ∆ ,

 
(5) 

was fitted to the test data. The obtained constants are given in Table 1. 

TABLE 1: Basquin constants [6]. 

 m A (  [MPa],  [cycles] )Nσ∆
Batch 1 4.63 141.30 10×  
Batch 2 5.08 152.76 10×  

The standard deviation of lo  is g N 1 0.11s =  and 2 0.15s =  for batch 1 and 2, respectively. 
The experiments showed that the fatigue life could be increased by approximately a factor 3 
through the introduction of compressive residual stresses. Both, experimental results and the 
fitted curves are plotted in Fig. 2b. 

PREDICTING THE FATIGUE LIFE OF WELDED RHS T-JOINTS 
The crack growth approach outlined in the theory section is now applied to predict the fatigue 
life of the RHS T-joints described in the previous section. The material data used, are listed in 
Table 2. p0.2R  and mR  are lower bounds received from Hydro Automotive. C ,  and m thK∆  
have been approximated from d da N  versus K∆  plots in Eurocode 9 [7]. 
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TABLE 2: 6082-T6 aluminium alloy material data. 

p0.2R  mR  m  C  ( )m cycle, MPa m  thK∆ MPa m⎡ ⎤
⎣ ⎦  Dσ∆ [MPa]

[MPa]  [MPa]  0.1R =  0.8R =  0.1R =  0R =  
270 300 3.8 113.17 10−× 116.34 10−× 3 120 

Local stress ratios to include residual stress 
To predict the residual stresses, FE analyses using the program WELDSIM, were carried out 
[6]. However, those analyses were not detailed enough to give a residual stress distribution, 
but only a rough estimate, with numerical values given in Table 3. Using the relations 
between maximum, minimum and mean stress and stress range the stress ratio can be written 
as  

m

m

2
2

R σ σ
σ σ

−∆
=

+ ∆
 .

 
(6) 

Local stress ratios, which include the residual stress, have been calculated from Eq. 6, where 
m m, nom residualσ σ σ= + . “Local” is here only partly true, since the actual local stress field at the 

weld toe is not accounted for. Including the local stress distribution, however, makes only 
sense if the residual stress distribution is known as well. The local stress ratios for two stress 
ranges are given in Table 3. It can be seen that the actual stress ratio at the weld toe differs 
strongly from the nominal stress ratio and should therefore not be neglected when predicting 
fatigue life. 

TABLE 3: Stress ranges, mean stresses, residual stresses and local stress ratios at 
the weld toe. 

 nomR  σ∆  m, nomσ residualσ mσ  R  
  [MPa] [MPa] [MPa] [MPa]  
Batch 1 0.1 50 30.5 50 80.5 0.53 
  100 61.1 50 111.1 0.38 
Batch 2 0.1 70 42.8 -20 22.8 -0.21 
  100 61.1 -20 41.1 -0.10 

The Walker exponent 
To account for the mean stress dependency with Walker’s equation, the Walker exponent 
must be known. Walker [2] found 0.5γ =  and 0.425γ =  for 2024-T3 and 7075-T6, 
respectively, and Dowling [8] gives 0.68γ =  and 0.64γ =  for the same alloys. Since C  is 
given at two different stress ratios, see Table 2, a Walker exponent can be calculated to 

0.88γ = . This seems rather high and using only two values is not a reliable method. In 
general, crack propagation data for 6000 series aluminium alloys is difficult to find. 
However, because of their frequent use in the aircraft industry, the data cover for 7000 series 
aluminium alloys, especially 7075-T6, is much better. Therefore, to estimate a more reliable 
Walker exponent, d da N  data have been extracted from [7-14] for the 7075-T6 aluminium 
alloy. The data points obtained are given in Fig. 3 in form of a  versus K∆ R  plot. 
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Distinguishing between different d da N  levels is required, since, due to the varying Paris 
exponents from the different sources, the Walker exponent will vary with d da N . Since the 
dependency of  on K∆ R  changes when R  becomes negative, the Walker exponent will also 
change. Therefore, to obtain a continuous curve, the least mean square method must be 
modified. More precisely, two interpolation curves, one for 0R ≤  and one for , must be 
found such that they intersect at 

0R ≥
0R = . Taking the logarithm of Eq. 2 gives the linear 

relationship 

( )y x a bx= +  ,
 
(8) 

with , logy K= ∆ log(1 )x R= − , Walkerloga K= ∆  and 1b γ= − . Using the modified least 
mean square condition 

( ) ( )22
1 2

!
( ) ( ) min

n m

i i j j
i j

y y x y y x− + − =∑ ∑ ,

 
(9) 

with  and , the two curves can be found. If the index i  applies to 
data points at , then 

1( )y x a bx= + 2 ( )y x a cx= +
0R ≤ j  applies at . Partial differentiation with respect to a ,  and 

 gives a system of linear equations to calculate a ,  and , and hence , 
0R ≥ b

c b c WalkerK∆ ( 0)Rγ ≤  
and ( 0)Rγ ≥ . Using the data points plotted in Fig. 3, the Walker exponents listed in Table 4 
are obtained. The corresponding curves are plotted in Fig. 3. In addition the relation 
suggested by Elber [15] (for 2034-T3) has been included in Fig. 3. 
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FIGURE 3: WalkerK K∆ ∆  as a function of stress ratio, R , for the crack propagation data 

obtained from [7-14] and the regression curves. 

It is seen that, although the Paris exponents differ, the obtained Walker exponents are almost 
independent of d da N  and in good agreement with [8]. Based on the above Walker 
exponents and the fact that not enough data for the 6082-T6 aluminium alloy was available, 
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0.5γ =  for  seems a reasonable choice. This has in addition the positive effect that  
is independent of 

0R ≥ 0a
R . For ,0R ≤ 0γ =  was taken.  

TABLE 4: Predicted Walker exponents for the 7075-T6 aluminium alloy. 

[ ]d d  m/cyclea N ( )0Rγ ≤ ( )0Rγ ≥
81 10−×  -0.07 0.66 
71 10−×  -0.04 0.64 
61 10−×  -0.02 0.62 

Predicting the fatigue life 
Assuming a propagating semi-elliptical surface crack, the fatigue life is found by integrating   
Eq. 1. Since the Paris constant C  is given at 0.1R =  (and 0.8) and the applied local stress 
ratio differs from those values and, in addition, varies with σ∆ , Walkers equation cannot be 
applied directly. At first  is transformed to C ( 0)C R =  using Eq. 2 and then, applying Eq. 2 
again,  adapted to the local stress ratio ( 0)C R = R . Inserting into Eq. 1, substituting  and 
integrating, the total fatigue life can be expressed as: 

K∆

f

i

1
1

f k
1

1 1 π d
1

m a
m

a

RN F M
C R

γ

σ
−−

−⎡ ⎤−⎛ ⎞ ⎡ ⎤= ∆ +⎢ ⎥⎜ ⎟ ⎣ ⎦−⎝ ⎠⎢ ⎥⎣ ⎦
∫ 0a a a  .

 (1
0) 

The index 1 refers to the stress ratio at which the crack growth data are given and R  without 
index is the local stress ratio. The initial crack depth, , has been set to 0.05 mm, which is 
just below the resolution limit of the replica method used in [6] to find initial cracks. It must 
be mentioned that the predicted life is rather insensitive to the initial crack depth, which is 
because of the levelling effect of . In addition, the stress peak at the surface gives a fast 
propagation. After examining the fracture surface, the final crack depth, , has been set to 
2.85 mm, which corresponds to 95 % of the sections wall thickness. Although the joint is 
subjected to 4-point bending, homogeneous tension can be assumed to prevail in the flanges, 
because of the thin walled-cross section. The geometry function, , for a semi-elliptical 
crack in a plate, proposed by Newman and Raju [16], was employed. The equations to 
calculate  and 

ia

0a

fa

F

F kM  were developed for a plate and a joint made from plates, respectively. It 
is, therefore, not straightforward to apply them to hollow sections. The main problem is 
whether to set the “plate” thickness equal to the total section height or to the wall thickness. 
The geometry function  is relatively insensitive with respect to the thickness, see Fig. 1b, 
whereas 

F
kM  strongly depends on thickness. The larger the thickness the “deeper” is a crack 

“pushed” into the stress peak at the surface. It seemed, therefore, most realistic to use the wall 
thickness (3 mm) as “plate” thickness. The attachment footprint length l , see Fig 1a, was set 
to 6 mm, which approximately corresponds to the weld thickness. The initial crack aspect 
ratio was assumed to be 0.5a c = . Equation 10 was numerically integrated using Simpson’s 
rule. This was simultaneously done in  and  direction to allow the crack to reach the 
aspect ratio determined by  and 

a c
F kM . Fig. 4 shows both, experimentally obtained S-N-

curves and the predicted ones. Because of the varying local stress ratio, the predicted S-N-
curves are no longer straight lines, but slightly curved. Experimental and predicted curve are 
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in good agreement for batch 2. The General agreement for batch 1 is also good, but the 
“slope” of the curves shows a significant difference, which becomes worse at lower stress 
ranges. 
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FIGURE 4: Predicted versus experimental S-N-curves. 

CONCLUSIONS 
The fatigue life of welded T-joints made from rectangular hollow sections has been 
calculated using a crack propagation analysis and compared with experimental results. The 
overall agreement is good. Still, the slopes of the S-N-curves differ in a way that suggests the 
existence of some crack initiation. The attempt to account for different residual stresses via 
local stress ratios and Walkers equation was successful. A Walker exponent derived directly 
for the 6082-T6 alloy and including the local and the residual stress distribution when 
calculating the local stress ratio may give even more realistic results. 

REFERENCES 
1. Sharp, M. L., Nordmark, G. E. and Menzemer, G. C., Fatigue Design of Aluminium 

Components and Structures. McGraw Hill, New York, 1996. 

2. Walker, K., In Effects of Environment and Complex Load History on Fatigue Life, ASTM 
STP 462, Philadelphia, 1970, 1–14. 

3. El Haddad, M. H., Smith, K. N. and Topper, T. H., Journal of Engineering Materials 
Technology, vol. 101, 42–46, 1979. 

4. Härkegård, G., In Proceedings of the International Symposium of Fatigue Thresholds, 
867–879, Stockholm, 1981. 

5. Bowness, D. and Lee, M. M. K., International Journal of Fatigue, vol. 22, 369–387, 
2000. 

6. Tveiten, B. W., The Fatigue Strength of RHS T-joints. SINTEF report STF24 A03220, 
Trondheim, 2003. 

7. Eurocode 9. Design of aluminium structures – Part 2: Structures susceptible to fatigue. 
European Prestandard ENV 1999-2, 1998. 



ECF15 

8. Dowling, N. E., Mechanical Behaviour of Materials. Prentice Hall, London, 1999. 

9. Bu, R. and Stephens, R. I., Fatigue & Fracture of Engineering Materials & Structures, 
vol. 9, 35–48, 1986. 

10. Hudson, C. M., Effect of stress ratio on fatigue-crack growth in 7075-T6 and 2024-T3 
Aluminum-alloy specimens, NASA TN D-5390, Washington, 1969. 

11. Durán, J. A. R., Castro, J. T. P. and Filho, J. C. P., Fatigue & Fracture of Engineering 
Materials & Structures, vol. 26, 137–150, 2003. 

12. Wu, X. R., Newman, J. C., Zhao, W., Swain, M. H., Ding, C. F. and Phillips, E. P., 
Fatigue & Fracture of Engineering Materials & Structures, vol. 21, 1289–1306, 1998. 

13. Fleck, W. G. and Anderson, R. B., In Proceedings of the second International Conference 
on Fracture, Brighton, edited by Pratt, P. L., Chapman & Hall, 1969. 

14. Damage Tolerant Design Handbook. Metals and Cheramics Information Center, Battelle, 
1972. 

15. Elber, W., Damage Tolerance in Aircraft structures. ASTM STP 486, 230–242, 1971. 

16. Newman Jr., J. C. and Raju, I. S., Engineering Fracture Mechanics, vol. 15, 185–192, 
1981. 

 
  


