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Abstract 
Asymptotic fields of stresses, creep strain rates and damage of mode I mode III creep cracks in 
steady-state growth are analyzed on the basis of Continuum Damage Mechanics. The Kachanov 
– Rabotnov theory is utilized and the scalar continuity parameter is incorporated into the power 
stress – strain rate constitutive relations. It is supposed that there is the totally damaged zone near 
the crack tip. The asymptotic solution for the stress and damage fields is sought outside of the 
totally damaged zone for large distances from the crack tip. The new far stress field determining 
the geometry of the totally damaged zone is found and analyzed. It can be concluded that the 
new far field asymptotic stress found differs from the well-known Hutchinson - Rice - Rosengren 
(HRR)-solution, the HRR-solution can't be used as the remote boundary condition and the HRR-
field does not govern the geometry of the totally damaged zone. 

Statement of the problem  
The objective of this paper is to evaluate the mechanical behavior around a growing crack tip in 
a damaged material under creep conditions. Asymptotic fields of stresses, strain rates and 
damage of a mode I and mode III creep crack in steady-state growth are analyzed on the basis of 
Continuum Damage Mechanics. The conventional Kachanov–Rabotnov creep–damage theory is 
utilized and the scalar continuity (integrity) parameter is incorporated into the power stress–creep 
strain rate constitutive relations: 
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where ijε&  labels the creep strain rate, eσ  is the equivalent stress, ( )22 23 / 4e rr 3 rθθ θσ σ σ σ= − +  for 

plane strain conditions, 2 2 2 3e rr rr
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rθθ θθ θσ σ σ σ σ σ= + − +  for plane stress conditions (Mode I crack), 
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zθσ σ σ= +  for Mode III crack, ψσ /ij  and ψ/ijs  are the effective stresses and the effective 

deviatoric stresses respectively (the effective stress is the stress referred to the surface that really 
transmits the internal forces), ψ  is referred to as continuity, a scalar related to damage 
representing the ration between the residual effective load-carrying area of damaged material and 
that of the initial perfect one. The symbols  and n B  are the creep exponent and material 
constant, respectively.  

There have been plenty of literature (Murakami et al. [1,2], Zhao and Zhang [3,4]) devoted to 
the analysis of the near crack tip fields coupled with elastic, elastic–plastic, fatigue and creep 
damage. Some of the essential aspects of the considered set of problems can be distinguished.  

1. The damage field gives significant influence on the stress field near the crack tip. 2. The 
mathematical structure of governing equations is affected by the modeling of damage. 3. While 
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Hutchinson–Rice–Rosengren (HRR)–field of non-linear mechanics always shows the stress 
singularity at the crack tip for any finite value of the creep exponent, the preceding material 
damage in front of the crack decreases the stress singularity. 4. The totally damaged zone or 
(and) the damage process zone need to be modeled in the crack tip region. 

Therefore, it is supposed that there is the totally damaged zone near the crack tip where the 
damage parameter reaches its critical value and all the stress tensor components are equaled to 
zero. The shape of the totally damaged zone is not known and should be obtained as a part of the 
solution. Since the totally damaged zone is modeled in the vicinity of the crack tip, the governing 
system of equations of the conventional Continuum Mechanics can not be formulated directly in 
the crack tip region. Thus, the asymptotic solution for the stress and damage fields is sought 
outside of the totally damaged zone for large distances from the crack tip.  

Let us take a mode I creep crack extending at a constant rate in a stationary Cartesian 
coordinate system  as shown in Fig.1 and assume that the material in the vicinity of the 
crack tip is in the state of plane strain or of plane stress. We can move cartesian coordinates 

 and polar coordinates or

1 2OX X

1 2ox x θ  with origin at the crack tip of the moving crack, where the 
direction 1x  and that of 0θ =  are in the direction of crack extension.  

 

 
FIGURE 1. Stationary and moving coordinate systems 

The governing equations for a mode I creep crack in steady-state growth are given as follows: 

equilibrium equations 

1 10, 2 0,r rr r rrr

r r r r r r
θ θθ θ θθ θσ σ σ σ σ σσ

θ θ
∂ − ∂ ∂∂

+ + = + + =
∂ ∂ ∂ ∂

 (2) 

compatibility condition 
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We represent the damage state of material by an isotropic continuity (integrity) variable 
 and by assuming that the creep damage is governed by the equivalent stress, the 

damage evolution equation in multi-axial state of stress may be given as follows (Kachanov [5], 
Lemaitre and Chaboche [6], Lemaitre [7]) 

(0ψ ψ≤ ≤ )1

)
)

( m
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where , ( 0.7A m m n≈  denote material constants, ( )1 1eqv e kkσ ασ βσ α β σ= + + − − , 
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denotes the material derivative with respect to time . In the particular case of steady-state crack 
growth, we have 
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and hence Equation (4) leads to  
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The constitutive equations (1) can be presented in the form  
1 1
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for plane strain conditions, 
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for plane stress conditions. Traction – free boundary conditions are prescribed on the crack faces 
which require 

( , ) 0, ( , ) 0rr rθθ θσ θ π σ θ π= ± = = ± = . (10) 

The remote boundary condition can be naturally formulated in the form 
1/( 1)
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However, asymptotic analysis of the kinetic law of damage evolution (7) shows that it is 
necessary to study the eigenspectrum of a creeping damaged body with a growing crack at large 
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distances from the crack tip. The stress and the continuity parameter are assumed in the separated 
form as follows 

.0,,),(1),(),(),( <∞→−== γθθψθθσ γ srgrrfrr ij
s

ij  (12) 

The cumulative damage evolution law (7) can be represented in the dimensionless form  

( )cos / (sin / ) / /
m

eqvr rθ ψ θ ψ θ σ∂ ∂ − ∂ ∂ = ψ . (13) 

It is obvious from Equations (12) and (13) that the stress exponent  and s γ  are connected by 
the formula sm+= 1γ  whence it follows that the well-known HRR stress field (where 

 and )1/(1 +−= ns 0)1/(1 >+−= nmγ  what contradicts the asymptotic expansions (12) and, 
consequently, the physical sense of the continuity parameter) can not be used as a remote 
boundary condition for the considered problem and the remote boundary condition is assumed to 
be in the form 

( , ) ( ,s
ij ijr Crσ θ σ θ→∞ → % )n . (14) 

Thus, it is necessary to obtain the eigenvalues  determining the far field stress asymptotic 
behaviour. 

s

Asymptotic stress field 
To obtain an asymptotic solution a procedure is utilized to make the equations have a 

dimensionless form. Dimensional analysis shows that one can introduce  
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%  is considered a characteristic length 
(thereafter the symbol  is omitted). ~

The equilibrium equations are satisfied by expressed the stress components as derivatives of 
the Airy stress function ( , )F r θ  as 

2

2

1, ,rr r
F F

r rθθ θθ θσ σ σ σ F
r θ

∂ ⎛= = ∆ − = − ⎜∂ ∂ ⎝ ⎠
∂ ∂ ⎞

⎟∂
, (15) 

2 2

2 2

1 1
r r r r 2θ
∂ ∂ ∂

∆ = + +
∂ ∂ ∂

. 

Since the present paper aims to elucidate the effect of material damage on the asymptotic 
fields near the creep-crack tip, we will assume the following asymptotic solution at large 
distances from the crack tip (at large distances from the crack tip as compared with the 
characteristic length of the totally damaged zone modelled in the crack tip region but at still 
small distances compared to the crack length, the characteristic length of the body) 
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where s  an

) 1 )θ= +

d γ  are undermined constants, ( )f θ  and ( )g θ  are unknown functions of θ . By 
substituting Equations (16) into Equation (15) and considering the major term of the asymptotic 
expansion of the stress tensor components we have
as follows: 
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 the components of the asymptotic stress field 

( ) ( )
( ) ( )2 21 ( ),f r fλ λ

θθ

σ θ λ θ

σ θ λ λ θ

σ θ λ θ

− −

− −

′′= + =

=

′= − =
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and 2( , ) ( )e er rλσ θ σ θ−= , where for plane strain conditions 

( ) ( ) ( )2 22 2 2 22 4( 1) 2 (2 )e f f ffσ λ λ λ λ λ 2 ,f′ ′′ ′′= − + − + − +  (18) 

for plane stress conditions 

( ) ( ) ( )2 22 2 2 2 23 3 3( 1) (3 )e f f ff fσ λ λ λ λ λ λ′ ′′ ′′= − + + − + − + . (19) 

By substituting the stress expansions (17) into the constitutive equations (8) and, then into the 
compatibility equation (3), one can find the fourth order ordinary differential equation 
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Because of the symmetry of the probl
have the following boundary conditions f

em and of the vanishing condition at the crack plane we 
or the non-linear forth order differential equation (20) 

( 0) 0, ( 0) 0f fθ θ′ ′′′= = = = , (21) 

( ) 0f( ) 0,f θ π θ π′= = = . (22) 

The two-point boundary value problem of Equations (20) – (22) for the asymptotic stress field 
( )f

=

θ  can be solved by a shooting method as an initial value problem. For this purpose, the initial 
values of (0)f  and (0)f ′′  should be specified besides the initial conditions of Equations (21). 
Since the d rentia quation (20) iiffe l e s homogeneous, the value of (0)f  can be specified 
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c . arbitrary. As regards (0)f ′′ , on the other hand, we can specify a proper undetermined constant
Then, besides the condition (21), additional initial conditions 

( 0) 1, ( 0)f f cθ θ′′= = = =  (23) 

are prescribed for the differential equation (20). 

Thus, the boundary value problem (20), (21), (23) defines a non-linear eigenvalue problem in 
which is the  unge–Kutta–
Feldberg method has been used. A shooting method has been utilised as well in order to meet the 
boundary con ck face. The basic num . 

TABLE 1. Eigenvalues  obtained for mode III and mode I cracks 

Mode III crac

s   eigenvalue. To solve the boundary value problem numerically the R

dition on the cra erical results are presented in Table 1

s

k Mode I crack (plane strain condition)
1== mn  5.1−=s 1== mn 5.1−=s  75.0)0( −=′′f

nmn 7,0,2 ==  2303.1−=s nmn 7,0,2 == 1s = − (0) 0.5f ′′ = −
nmn 7,0,3 ==  1830.1−=s nmn 7,0,3 == 0.7716s = −  (0) 0.4372f ′′ = −
nmn 7,0,4 ==  1648.1−=s nmn 7,0,4 == 0.6684s = −  (0) 0.4092f ′′ = −
nmn 7,0,5 ==  1553.1−=s nmn 7,0,5 == 0.6179s = −  (0) 0.3985f ′′ = −
nmn 7,0,6 ==  1495.1−=s nmn 7,0,6 == 0.5901s = −  (0) 0.3958f ′′ = −
nmn 7,0,7 ==  1455.1−=s nmn 7,0,7 == 0.5732s = −  (0) 0.3950f ′′ = −
nmn 7,0,8 ==  1425.1−=s nmn 7,0,8 == 0.5621s = −  (0) 0.3948f ′′ = −
nmn 7,0,9 ==  1405.1−=s nmn 7,0,9 == 0.5543s = −  (0) 0.3943f ′′ = −
nmn 7,0,10 ==  1390.1−=s nmn 7,0,10 == 0.5429s = −  (0) 0.3940f ′′ = −

 

Note that this approach allows to consider the initially coupled boundary value problem  
continuity parameter is incorporated into the constitutive equations) as the uncoupled problem 
with respect to functions ( )f

 (the

θ  and ( )g θ . As the major term  the continuity asymptotic 
expansion as ( )r →∞

 of
 we can first analyse Equation (20) 

with the bo ), (23) a
 is supposed to be equalled to 1 that

undary conditions (21 s it was described early. Then, having obtained ( )f θ  
we study the ordinary differential equation with respect to ( )g θ  following from the damage 
evolution law (13) 

sin ( ) cos ( ) ( )m
eqvg gθ θ γ θ θ σ θ′ − = , (24) 

the right hand side of Equation (24) is the known function determined by ( )f θ . Equation (24) is 
erically with the regularity requiremethen analyzed num nt mg(0) (0) /eqvσ γ= − . Thus, the two – 

nt to the crack surfaces by means of the formula 
0  and, consequently, 

term asymptotic expansion for the continuity parameter is obtained and we can find the 
configuration of the totally damaged zone adjace

1 ( )r gγψ θ= − = ( ) 1/( ) ( )r g γθ θ −= . 

The obtained configuration of the totally damaged zone for observers located at different 
distances from the crack are shown in Figs 2-4. 
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 damaged zone adjacent toFIGURE 2. Geometry of the totally  the crack surfaces. Mode I crack 
(plane strain conditions). 

 

 

 
 

 damaged zone adjacent toFIGURE 3. Geometry of the totally  the crack surfaces. Mode I crack 
(plane strain conditions). 
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 damaged zone adjacent toFIGURE 4. Geometry of the totally  the crack surfaces. Mode I crack 
(plane strain conditions). 

sults obtained are coincident with 

y a semi-ellipse in front of the crack and a wake parallel to the crack 
 crack. 

2. , S., Liu, Y. and Mizuno, M., Comput. Methods Appl. Mech. Engrg, vol. 183, 15-

5.  Introduction to Continuum Damage Mechanics, Martinus-Nijhoff, 

6. aboche, J.L., Mechanics of Solid Materials, Cambridge University Press, 

Berlin, 1996. 

Conclusion 
1) The new far field stress asymptotic behavior determining the geometry of the totally damaged 
zone enclosing the growing crack is found and analyzed. The re
the eigenvalues for some values n  given in Meng and Lee [8]. 

2) One can conclude that in the framework of the presented technique the unknown boundary of 
the totally damaged zone is completely described in a rather simple way by the only equation 
following from the two-term asymptotic expansion of the continuity parameter at large distance 
from the crack tip unlike some previous works where the contour of the damage field is a priori 
assigned, for example, b
plane behind the
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