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Abstract

The mechanical behaviour of a fiber-reinforced concrete beam under cyclic bending is
examined through a theoretical model based on fracture mechanics. The cracked
infinitesimal portion of the beam being considered is subjected to an external bending
moment and bridging reactions of the fibers. A rigid-perfectly plastic law is assumed for
the reinforcements (whose ultimate reactions correspond to either yielding or slippage),
whereas the concrete matrix is supposed to behave in a linear-elastic way. The statically
indeterminate bridging forces are computed through congruence conditions, and typical
phenomena, such as elastic shake-down and plastic shake-down, are described in terms of
applied bending moment against beam cross-section rotation. Then, the Paris law is
exploited to analyse the fatigue behaviour of the composite beam up to failure.

Introduction

As is well-known, fatigue phenomena related to metallic structures have been analysed for
over one century [1], whereas the behaviour of reinforced concrete (RC) structures under
cyclic loading has been studied for only a few decades. Some Standards [2,3] give us rules
on how to take into account such phenomena when designing RC structures, but additional
investigations are needed especially for fiber-reinforced concrete (FRC) structures. If a
crack develops in a FRC structure, the overall behaviour is strongly affected by the crack
bridging reactions of the fibers intersected by such a defect, and the progressive crack
growth under cyclic loading influences the bridging effect, by also causing significant
changes in the mechanical properties of the composite material (strength, toughness,
stiffness, hysteretic behaviour, etc.). Some theoretical models have been proposed in order
to examine FRC structures and to predict fatigue life (for instance, see Zhang and Stang
[4], Zhang et al. [5], Matsumoto and Li [6]).

A fracture mechanics-based model proposed in Refs [7-9] for RC beams under cyclic
loading has been extended to the case of FRC beams with two reinforcements [10]. In the
present paper, the case of FRC beams with multiple reinforcements is analysed, by
considering a cracked infinitesimal portion of a composite beam with a rectangular cross-
section subjected to an external bending moment M and bridging reactions of the fibers (Fig.
1). Assuming a rigid-perfectly plastic law for the reinforcements (whose reactions present
ultimate values corresponding to either yielding or slippage) and a linear-elastic law for the
matrix, the statically indeterminate bridging forces are deduced from congruence conditions
related to the crack opening translations at the levels of the fibers. Typical phenomena, such
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FIGURE 1. (a) Schematic of the model; (b) crack profile for elastic fibers; (c) crack
profile for yielded or slipped fibers.

as elastic shake-down and plastic shake-down, are described in terms of applied bending
moment against beam cross-section rotation. Then, the flexural behaviour of the
composite beam up to failure is captured by applying the well-known fatigue crack growth
law by Paris [11].

Theoretical Model

The crack is assumed to be normal to the longitudinal axis of the beam, and the crack depth
is equal to a. Reinforcements are discretely distributed across the crack and oriented along
the above axis. The position of the i-th fiber (i = 1, ..., n, where n is the number of fibers
intersected by the crack) is described by the distance c¢; with respect to the bottom of the
beam cross-section (Fig. la). The reinforcement numbers are sorted according to the
reinforcement positions along the beam height, by assuming that fiber No.1 is the nearest
to the bottom of the beam cross-section. The relative crack depth £ = a / b and the

normalised coordinate { ; = ¢;/ b are also defined.
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Fibers act as rigid-perfectly plastic bridging elements (with symmetric behaviour in
both tension and compression) which connect together the two surfaces of the crack. The
generic (i-th) fiber is characterised by an ultimate force F), ; (and —F), ; in compression)

corresponding to either yielding or slippage of the reinforcement, whichever of them
exhibits the minimum absolute value.

Let us consider the above composite beam subjected to a bending moment M (opening

the crack) monotonically increasing. The crack opening translation w; at the i-th fiber level
can be obtained through the superposition principle and the localised compliances due to
the crack:

n n

W, =Wy +le,.j :)\I.MM—ZI)\UFJ. (1)
Jj= Jj=
where wijs and w;; are the crack opening translations produced by the bending moment M
and by the generic reaction F; (assumed to be positive when the j-th fiber is under tension),
respectively. The localised compliances, A;3s and kij, due to the crack represent the i-th
crack opening translation for M = 1 and that for a unit crack opening force, F; = 1, acting at
¢, respectively [12].

According to congruence considerations, all the translations w; (i =1, ..., n) are equal to
zero until yielding or slippage of at least one of the » fibers is reached (Fig. 1b,c) [13]:

{wh={ru M -[A|{F}={0} @)

T . . .
where {w} = {W1 oW, } is the vector of the crack opening translations at the

different fiber levels, and {F } = {F IR O }T is the vector of the unknown bridging
forces. Further, {)\ "; } is the vector of the localised compliances related to the bending
moment M, whereas [)\] is a symmetric square matrix of order n, whose generic element ij

represents the localised compliance A ;;. Hence, the unknown vector {F } can be obtained
from Eq. 2:

{Fy=[a]""{ry M 3)

If the generic (i-th) fiber yields or slips, the crack opens at the coordinate C ; , and w;
becomes an unknown quantity. Therefore, the number of kinematic conditions in Eq. 2
reduces by one, along with the degree of statical redundancy, F; being equal to the
previously defined maximum bridging force F'p, ;. Consequently, the number of equations
which can be written (that is, n - 1) continues to be equal to the number of unknowns (that
is, n - 1). At the subsequent yielding or slippage of some fiber, the number of kinematic

conditions reduces further along with the number of statically indeterminate forces.
Therefore, the congruence condition in Eq. 2 can be written as follows:
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where [H] is a diagonal matrix whose generic element ii is given by the Heaviside function
H(x), with x=1-|Fj|/ Fp ; (thatis, H(x)=1 forx>0, and H(x) =0 for x < 0), and

{Fl=1 H]{F}+( ){FP} (5)

with {FP } = {FP’1 R } T, whereas [/] is the unit matrix of order n. Note
that, since the matrix [H] becomes singular when at least one fiber yields or slips,
equation(s) related to H ;; = 0 must be eliminated for solving Eq. 4. After determing the
vectors {F } and {F } from Eqgs 4 and 5, the crack opening translations {w} and the

rotation ¢ of the cracked beam cross-section are computed as follows :
wh={x, M -[2|{F} (6a)

¥ = /\MMM_{)‘M } T{F} (6b)

The collapse of the beam under the applied bending moment might occur because of
two possible reasons: (1) unstable fracture of the concrete matrix (when the toughness K;¢
of concrete is attained, that is, K; = K;c , where the stress 1nten51ty factor K; is obtained by

means of the superposition principle: K, = K ;,, —ZK ;i )s or (2) crushing of the
i1
concrete matrix (when the normal compressive stress o ., computed through the classical

bending theory applied to the ligament, attains the concrete strength f,. ).

Now consider constant amplitude cycles of bending moment M, ranging from M,,;,, to

M,y - Fibers might undergo plastic-to-rigid transitions at load reversals. Therefore, the
congruence condition of Eq. 4 is modified in order to consider possible non-zero

translations { w} at reversals:

(b= Lo =8 {3 Mt - o)~ [N{F}-{Fo}) )= {0} @

with

{F}=tH{F}+q([1]-[H]){F)s} ®)

where ¢ = 1 during loading and ¢ = - 1 during unloading. The subscript ‘0’ refers to the
values of some parameters (crack opening translations, bending moment and fiber
reactions) at the preceding load reversal. Obviously, the quantities related to the subscript
‘0’ are equal to zero at the beginning of the loading process, i.e. at the first loading half-
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cycle. After determining the solution vector {F } from Eq. 7, {}7 } can be computed by
Eq. 8, and crack displacements can be deduced by Eqs 6a and 6b.

If the crack is assumed to propagate (under cyclic loading) according to the Paris law
(da/dN = C AK "), increments of crack length due to fatigue crack growth can be

determined after every block of a given number of cycles. The above increments imply an
increase of localised compliances at constant applied loads (i.e. bending moment M and

bridging forces {F } ).

Shake-down Phenomenon

Consider a composite beam with a single fiber. For certain values of loading and
mechanical and geometrical parameters, the bending moment vs rotation curve for a single
cycle might look like that reported in Fig. 2. The numbers (from 1 to 6) in the graph
indicate the sequence of the load steps, while the upwards and downwards triangular
symbols refer to tensile and compressive yielding/slippage of the fiber, respectively. It can
be noted that the most significant values of the bending moment in a loading cycle are: the
plastic bending moment Mp (equal to M @) ) which produces yielding or slippage in the
reinforcement (subjected to tension) during loading, and the shake-down bending moment
Msp (equal to M © ) above which yielding or slippage in the reinforcement (subjected to
compression) occurs during unloading (see load step No. 3, represented by the segment 2-3
in Fig. 2).
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FIGURE 2. Typical bending moment vs rotation diagram in the case of a single fiber.
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For M ¢, <M, . <M  (Mr = bending moment of matrix unstable fracture when

K; attains Kjc , or bending moment of matrix crushing when the compressive strength f. of
concrete is attained), plastic shake-down with hysteretic loops in the bending moment vs

rotation diagram can be observed (for example, the energy dissipated in each cycle is equal
to the area 2-3-4-5-6 in Fig. 2).

For a beam with three identical fibers, the bending moment against rotation curve is
shown in Fig. 3. As in the previous case, the numbers in the graph indicate the sequence of
the load steps, while the upwards and downwards triangular symbols refer to tensile and
compressive yielding/slippage of the reinforcements, respectively. The plastic bending
moment Mp (equal to M @) ) and the shake-down bending moment My (equal to M @ ) are
displayed, and the energy dissipated in each cycle is equal to the area of the hysteretic loop
4-5-6-7-8-9-10-11-12.

The observations made for the cases in Figs 2 and 3 can be extended to the case of n
fibers, and the following general relationships can be written:

My, =M™ ©9)

where k refers to the load step for which the i-th fiber is on the verge of its yielding or
slippage in tension, and

MSD,I' :Mmax _M(k)+Mmin (10)
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FIGURE 3. Typical bending moment vs rotation diagram in the case of three fibers.
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where k now refers to the load step for which the i-th fiber is on the verge of its yielding or

slippage in compression. Then, the overall plastic bending moments and shake-down
bending moment are given by:

MP:min{MP,l.} (11a)

Mgy =min{M g, } (11b)

Now assume a crack propagating according to the Paris law. The case of three identical
fibers, analogous to the case in Fig. 3, is analysed. Figure 4 shows bending moment vs
rotation hysteretic loops at different numbers of loading cycles (the first cycle, the generic

N-th cycle, and the final Ny-th cycle). As the crack propagates, the values of the local
compliances increase and, hence, the slopes of the linear segments in the diagram M vs ¢
decrease. Further, by increasing the crack length &, the shake-down bending moment

N ,
values decrease (see M 21[2, M g) and M g Df ) in Fig. 4). Consequently, the energy

dissipated at every hysteretic loop varies as the number of loading cycles increases.
Finally, the fatigue collapse of the beam can occur due to either matrix unstable fracture,

when K; attains K;c, or matrix crushing, when o .. attains f.. .
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FIGURE 4. Typical bending moment vs rotation hysteretic loops at different numbers of
loading cycles, in the case of three fibers.
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Conclusions

A fracture mechanics-based theoretical model proposed to analyse the hysteretic behaviour
of a RC beam subjected to cyclic bending is here extended to the case of a FRC beam with
multiple reinforcements. Accordingly, an infinitesimal portion of a cracked beam with an
elastic concrete matrix and rigid-perfectly plastic fibers has been examined, subjected to an
external bending moment and bridging reactions of the fibers. The capabilities of the
model are presented in terms of applied bending moment against beam cross-section
rotation. In spite of the simple assumptions adopted, typical cyclic phenomena, including
elastic shake-down and plastic shake-down, can be described, and fatigue life can be
predicted.
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